Poly[[dodeca­aqua­bis­(μ 3-pyridine-2,6-dicarboxyl­ato)tetra­kis­(μ 2-pyridine-2,6-dicarboxyl­ato)tri­calciumdieuropium(III)] 10.5-hydrate]

Shi, Fengjuan a Deng, Jiguang a Dai, Hongxing a * [a ] Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People’s Republic of China

Abstract

In the title compound, {[Ca 3Eu 2(C 7H 3NO 4) 6(H 2O) 12]·10.5H 2O} n , the Eu III ion is nine-coordinated by three tridentate pyridine-2,6-dicarboxyl­ate (PDA) ligands, forming a [Eu(PDA) 3] 3− building block. The Ca 2+ ions adopt two types of coordination geometries. One Ca 2+ ion, lying on a twofold rotation axis, is eight-coordinated by four carboxyl­ate O atoms from four PDA ligands and four water mol­ecules, and the other two Ca 2+ ions, each lying on an inversion center, are six-coordinated by two carboxyl­ate O atoms from two PDA ligands and four water mol­ecules. The carboxyl­ate groups bridge the Eu III and Ca 2+ ions into a three-dimensional porous framework, with channels extending along [010] and [001] in which lattice water mol­ecules are located. Two of the lattice water mol­ecules are disordered over two sets of sites with equal occupancy and one water mol­ecule is 0.25-occupied. Numerous O—H⋯O hydrogen bonds involving the water mol­ecules and carboxyl­ate O atoms are present.

Related literature  

For 3 d–4 f and 4 d–4 f metal complexes with pyridine-2,6-dicarboxyl­ate ligands, see: Zhao et al. (2006 , 2007 , 2011 ); Zhao, Zhao et al. (2009 ). For Ln–Ba ( Ln = lanthanide) complexes with pyridine-2,6-dicarboxyl­ate ligands, see: Zhao, Zuo et al. (2009 ). e-68-0m685-scheme1.jpg

Experimental  

Crystal data  

  • [Ca 3Eu 2(C 7H 3NO 4) 6(H 2O) 12]·10.5H 2O

  • M r = 1820.14

  • Monoclinic, e-68-0m685-efi3.jpg

  • a = 16.070 (4) Å

  • b = 9.471 (2) Å

  • c = 23.540 (6) Å

  • β = 107.685 (4)°

  • V = 3413.5 (14) Å 3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.16 mm −1

  • T = 113 K

  • 0.20 × 0.19 × 0.16 mm

Data collection  

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan ( CrystalClear; Rigaku/MSC, 2009 ) T min = 0.672, T max = 0.724

  • 27531 measured reflections

  • 6015 independent reflections

  • 4964 reflections with I > 2σ( I)

  • R int = 0.054

Refinement  

  • R[ F 2 > 2σ( F 2)] = 0.042

  • wR( F 2) = 0.094

  • S = 1.14

  • 6015 reflections

  • 531 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρ max = 1.31 e Å −3

  • Δρ min = −1.29 e Å −3

Data collection: CrystalClear (Rigaku/MSC, 2009 ); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: XP in SHELXTL (Sheldrick, 2008 ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812018028/hy2534sup1.cif

e-68-0m685-sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018028/hy2534Isup2.hkl

e-68-0m685-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2534).

Acknowledgements

This work was supported by the National High Technology Research and Development (863) Key Program of the Ministry of Science and Technology of China (grant No. 2009AA063201).

Appendices

supplementary crystallographic information

Comment

Pyridine-2,6-dicarboxylic acid (H 2PDA), as a chelating or bridging ligand, has been proven to be an efficient multidentate ligand to construct multidimensional heterometal-organic frameworks with porous structures. Especially, the lanthanide complexes based on H 2PDA show variable structure characters. The PDA anion chelating to a lanthanide ion possesses free carboxylate oxygen atoms, which can coordinate with transition metals. A systematic study of 3d–4f and 4d–4f complexes based on pyridine-2,6-dicarboxylic acid ligand has been undertaken, such as Ln–Mn (Zhao et al., 2006), Ln–Co (Zhao et al., 2007), Ln–Fe (Zhao et al., 2011) and Ln–Ag (Zhao, Zhao et al., 2009). However, the reports of heterometal-organic frameworks associated with lanthanide and alkaline earth ions are rather rare, only Ln–Ba complexes based on pyridine-2,6-dicarboxylic acid ligand were reported (Zhao, Zuo et al., 2009). In this paper, we report the synthesis and crystal structure of the title compound, using the hydrothermal method with pyridine-2,6-dicarboxylic acid.

In the title compound, the Eu III ion coordinates with three PDA ligands in a tridentate mode, forming a [Eu(PDA) 3] 3- building block. The remaining coordination sites in the [Eu(PDA) 3] 3- unit coordinate with Ca 2+ ions. The Ca 2+ ions adopt two types of coordination geometry, as shown in Fig. 1. The coordination environments of Ca1 and Ca3 atoms are similar, each located on an inversion center and coordinated by two carboxylate O atoms and four water molecules, forming [CaO 2(H 2O) 4] building blocks. Ca2 atom lies on a twofold rotation axis and is coordinated by four carboxylate O atoms from four PDA ligands and four water molecules, forming an eight-coordinated [CaO 4(H 2O) 4] building block. Furthermore, Ca2 and Ca1 atoms are bridged by the same PDA ligand. The overall framework can be viewed as the self-assembly of three types of building blocks, [Eu(PDA) 3], [CaO 2(H 2O) 4] and [CaO 4(H 2O) 4]. Each [Eu(PDA) 3] is surrounded by two [CaO 2(H 2O) 4] units and one [CaO 4(H 2O) 4] unit in its vicinity, while each [CaO 2(H 2O) 4] or [CaO 4(H 2O) 4] unit has two [Eu(PDA) 3] and four [Eu(PDA) 3] units as the nearest neighbors. The linkers are carboxylate groups. As a result of this connection, the [CaO 2(H 2O) 4], [CaO 4(H 2O) 4] and [Eu(PDA) 3] building blocks are connected alternately by carboxylate groups, forming a three-dimensional porous framework, with channels extending along [0 1 0] and [0 0 1] (Fig. 2).

Experimental

A mixture of pyridine-2,6-dicarboxylic acid (134 mg, 0.8 mmol), calcium hydroxide (52 mg, 0.7 mmol), europium nitrate hexahydrate (89 mg, 0.2 mmol) and deionized water (10 ml) was placed in a 25 ml Teflon-lined stainless steel autoclave, which was kept at 433 K for 3 days. The resuling colorless block-shaped crystals suitable for X-ray diffraction experiment were collected and washed with deionized water and diethyl ether (yield: 170 mg).

Refinement

H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and U iso(H) = 1.2 U eq(C). H atorms of water molecules were found from difference Fourier maps and refined with a distance restraint of O—H = 0.85 (1) Å and with U iso(H) = 1.2 U eq(O). O22 and O23 atoms were disordered over two sets of positions with occupancy factors of 0.5:0.5, respectively. The occupancy factor of the lattice water O24 was set to 0.25. H atorms of disordered water molecules O22, O23 and O24 were not included. The highest residual electron density was found 2.36 Å from H5 atom and the deepest hole 0.78 Å from Eu1 atom.

Figures

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Lattice water molecules and H atoms are omitted and C atoms are not labeled for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1, -z+1/2; (iii) -x+1, y, -z+1/2; (iv) -x+1, -y, -z; (v) -x, -y, -z.]

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Lattice water molecules and H atoms are omitted and C atoms are not labeled for clarity. [Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1, -z+1/2; (iii) -x+1, y, -z+1/2; (iv) -x+1, -y, -z; (v) -x, -y, -z.]
Fig. 2.

The three-dimensional structure of the title compound viewed along the b axis. Lattice water molecules and H atoms are omitted for clarity.

The three-dimensional structure of the title compound viewed along the b axis. Lattice water molecules and H atoms are omitted for clarity.

Crystal data

[Ca 3Eu 2(C 7H 3NO 4) 6(H 2O) 12]·10.5H 2O F(000) = 1830
M r = 1820.14 D x = 1.771 Mg m 3
Monoclinic, P2/ c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 11834 reflections
a = 16.070 (4) Å θ = 1.3–27.9°
b = 9.471 (2) Å µ = 2.16 mm 1
c = 23.540 (6) Å T = 113 K
β = 107.685 (4)° Prism, colorless
V = 3413.5 (14) Å 3 0.20 × 0.19 × 0.16 mm
Z = 2

Data collection

Rigaku Saturn724 CCD diffractometer 6015 independent reflections
Radiation source: rotating anode 4964 reflections with I > 2σ( I)
Multilayer monochromator R int = 0.054
Detector resolution: 14.22 pixels mm -1 θ max = 25.0°, θ min = 1.3°
ω and φ scans h = −18→19
Absorption correction: multi-scan ( CrystalClear; Rigaku/MSC, 2009) k = −10→11
T min = 0.672, T max = 0.724 l = −28→28
27531 measured reflections

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR( F 2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ 2( F o 2) + (0.0212 P) 2 + 16.8621 P] where P = ( F o 2 + 2 F c 2)/3
6015 reflections (Δ/σ) max = 0.002
531 parameters Δρ max = 1.31 e Å 3
30 restraints Δρ min = −1.29 e Å 3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq Occ. (<1)
Eu1 0.296251 (16) 0.50554 (3) 0.097315 (11) 0.00952 (9)
Ca1 0.5000 0.0000 0.0000 0.0113 (3)
Ca2 0.5000 1.00350 (17) 0.2500 0.0138 (3)
Ca3 0.0000 0.0000 0.0000 0.0198 (4)
O1 0.3736 (2) 0.3233 (4) 0.16621 (16) 0.0151 (8)
O2 0.4013 (3) 0.2000 (4) 0.25127 (16) 0.0182 (9)
O3 0.1929 (2) 0.6789 (4) 0.11297 (16) 0.0174 (9)
O4 0.1130 (3) 0.7722 (5) 0.16683 (18) 0.0282 (11)
O5 0.3886 (2) 0.6872 (4) 0.15705 (16) 0.0149 (8)
O6 0.5155 (2) 0.8058 (4) 0.18919 (16) 0.0158 (9)
O7 0.3344 (2) 0.3313 (4) 0.03339 (16) 0.0140 (8)
O8 0.4335 (2) 0.2095 (4) 0.00428 (16) 0.0169 (9)
O9 0.2999 (2) 0.6871 (4) 0.02212 (16) 0.0162 (9)
O10 0.2495 (3) 0.7858 (4) −0.06830 (18) 0.0243 (10)
O11 0.1823 (2) 0.3273 (4) 0.08688 (16) 0.0159 (9)
O12 0.0604 (3) 0.2142 (4) 0.03527 (18) 0.0205 (9)
O13 0.6116 (2) 0.0662 (4) 0.08852 (17) 0.0185 (9)
H13A 0.647 (2) 0.113 (5) 0.075 (2) 0.022*
H13B 0.639 (3) 0.012 (5) 0.1167 (18) 0.022*
O14 0.4145 (3) −0.0939 (4) 0.05348 (17) 0.0222 (10)
H14A 0.419 (4) −0.043 (5) 0.0840 (16) 0.027*
H14B 0.380 (3) −0.162 (4) 0.052 (2) 0.027*
O15 0.3478 (3) 0.9194 (4) 0.21233 (17) 0.0204 (9)
H15A 0.306 (3) 0.974 (5) 0.194 (2) 0.025*
H15B 0.354 (4) 0.854 (4) 0.1894 (18) 0.025*
O16 0.4648 (3) 1.0983 (4) 0.14661 (18) 0.0165 (9)
H16A 0.504 (4) 1.121 (7) 0.135 (3) 0.020*
H16B 0.437 (4) 1.172 (7) 0.148 (3) 0.020*
O17 0.1405 (3) −0.0914 (5) 0.0396 (2) 0.0314 (11)
H17A 0.164 (3) −0.161 (4) 0.061 (3) 0.038*
H17B 0.179 (3) −0.033 (5) 0.036 (3) 0.038*
O18 −0.0140 (3) −0.0554 (5) 0.0933 (2) 0.0391 (12)
H18A −0.0678 (13) −0.048 (7) 0.090 (3) 0.047*
H18B 0.011 (3) −0.118 (6) 0.118 (3) 0.047*
N1 0.2624 (3) 0.4885 (5) 0.19488 (18) 0.0125 (9)
N2 0.4526 (3) 0.5088 (4) 0.09633 (18) 0.0106 (9)
N3 0.1693 (3) 0.5085 (5) 0.00041 (19) 0.0132 (9)
C1 0.3627 (4) 0.2941 (6) 0.2164 (2) 0.0140 (12)
C2 0.2960 (4) 0.3823 (6) 0.2330 (2) 0.0158 (12)
C3 0.2680 (4) 0.3533 (7) 0.2820 (2) 0.0227 (14)
H3 0.2916 0.2765 0.3078 0.027*
C4 0.2045 (4) 0.4396 (8) 0.2922 (3) 0.0292 (16)
H4 0.1838 0.4223 0.3253 0.035*
C5 0.1711 (4) 0.5518 (7) 0.2539 (3) 0.0281 (16)
H5 0.1283 0.6128 0.2608 0.034*
C6 0.2015 (4) 0.5727 (6) 0.2057 (2) 0.0184 (13)
C7 0.1659 (4) 0.6849 (6) 0.1585 (2) 0.0170 (13)
C8 0.4686 (4) 0.7088 (6) 0.1610 (2) 0.0124 (12)
C9 0.5084 (3) 0.6070 (5) 0.1267 (2) 0.0119 (12)
C10 0.5932 (4) 0.6158 (6) 0.1249 (2) 0.0169 (12)
H10 0.6311 0.6876 0.1464 0.020*
C11 0.6218 (4) 0.5190 (6) 0.0915 (2) 0.0182 (13)
H11 0.6800 0.5233 0.0896 0.022*
C12 0.5646 (4) 0.4142 (6) 0.0603 (2) 0.0165 (12)
H12 0.5832 0.3458 0.0372 0.020*
C13 0.4797 (3) 0.4130 (5) 0.0640 (2) 0.0116 (12)
C14 0.4114 (4) 0.3098 (6) 0.0316 (2) 0.0134 (12)
C15 0.2437 (4) 0.7017 (6) −0.0285 (3) 0.0172 (13)
C16 0.1646 (4) 0.6081 (6) −0.0416 (2) 0.0147 (12)
C17 0.0927 (4) 0.6196 (6) −0.0923 (2) 0.0192 (13)
H17 0.0898 0.6920 −0.1207 0.023*
C18 0.0254 (4) 0.5236 (7) −0.1002 (3) 0.0258 (15)
H18 −0.0243 0.5285 −0.1346 0.031*
C19 0.0312 (4) 0.4197 (6) −0.0574 (3) 0.0207 (14)
H19 −0.0142 0.3524 −0.0622 0.025*
C20 0.1038 (3) 0.4157 (6) −0.0079 (2) 0.0137 (12)
C21 0.1156 (4) 0.3100 (6) 0.0415 (2) 0.0149 (12)
O19 0.2379 (3) 0.0820 (5) 0.9928 (2) 0.0386 (12)
H19A 0.211 (4) 0.121 (6) 0.9594 (17) 0.046*
H19B 0.282 (3) 0.132 (6) 1.011 (2) 0.046*
O20 0.2972 (3) 0.9062 (5) 0.3187 (2) 0.0351 (12)
H20A 0.314 (4) 0.890 (7) 0.2883 (16) 0.042*
H20B 0.253 (3) 0.960 (6) 0.309 (2) 0.042*
O21 0.1986 (3) 0.0862 (5) 0.15634 (18) 0.0290 (11)
H21A 0.196 (4) 0.152 (4) 0.1311 (18) 0.035*
H21B 0.176 (4) 0.011 (3) 0.139 (2) 0.035*
O22 0.1015 (10) 0.9136 (14) 0.8459 (6) 0.049 (4) 0.50
O23 0.1373 (5) 0.9971 (10) 0.2459 (3) 0.030 (2) 0.50
O22' 0.1367 (9) 0.9633 (14) 0.8406 (7) 0.049 (4) 0.50
O23' 0.0826 (8) 1.1594 (14) 0.2299 (5) 0.066 (4) 0.50
O24 0.8088 (12) 0.744 (2) 0.1251 (9) 0.039 (5) 0.25

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Eu1 0.00769 (14) 0.00855 (14) 0.01199 (14) −0.00043 (12) 0.00250 (10) −0.00100 (12)
Ca1 0.0110 (7) 0.0095 (7) 0.0141 (7) 0.0012 (7) 0.0049 (6) −0.0014 (7)
Ca2 0.0153 (8) 0.0103 (8) 0.0120 (7) 0.000 −0.0018 (6) 0.000
Ca3 0.0147 (8) 0.0103 (8) 0.0264 (9) −0.0014 (7) −0.0059 (7) −0.0002 (7)
O1 0.015 (2) 0.014 (2) 0.016 (2) 0.0042 (16) 0.0041 (16) −0.0006 (16)
O2 0.021 (2) 0.014 (2) 0.015 (2) 0.0040 (17) −0.0005 (17) 0.0014 (17)
O3 0.014 (2) 0.018 (2) 0.020 (2) 0.0036 (17) 0.0044 (17) −0.0012 (17)
O4 0.023 (2) 0.036 (3) 0.025 (2) 0.016 (2) 0.0068 (19) −0.003 (2)
O5 0.009 (2) 0.014 (2) 0.021 (2) −0.0012 (16) 0.0038 (16) −0.0036 (16)
O6 0.010 (2) 0.013 (2) 0.022 (2) −0.0035 (16) 0.0008 (16) −0.0036 (17)
O7 0.012 (2) 0.013 (2) 0.018 (2) −0.0009 (16) 0.0071 (16) −0.0035 (16)
O8 0.023 (2) 0.013 (2) 0.017 (2) 0.0045 (17) 0.0090 (17) −0.0017 (16)
O9 0.014 (2) 0.016 (2) 0.018 (2) 0.0002 (17) 0.0050 (17) 0.0032 (16)
O10 0.021 (2) 0.026 (2) 0.027 (2) 0.0012 (19) 0.0096 (19) 0.0131 (19)
O11 0.010 (2) 0.015 (2) 0.020 (2) −0.0034 (16) 0.0012 (17) −0.0025 (16)
O12 0.015 (2) 0.013 (2) 0.032 (2) −0.0064 (17) 0.0043 (18) −0.0052 (17)
O13 0.015 (2) 0.021 (2) 0.018 (2) −0.0004 (18) 0.0024 (17) 0.0034 (17)
O14 0.033 (3) 0.018 (2) 0.019 (2) −0.0128 (19) 0.014 (2) −0.0057 (17)
O15 0.019 (2) 0.013 (2) 0.023 (2) 0.0057 (18) −0.0025 (18) −0.0045 (17)
O16 0.019 (2) 0.010 (2) 0.020 (2) 0.0020 (18) 0.0057 (18) −0.0018 (17)
O17 0.015 (2) 0.016 (2) 0.061 (3) 0.0024 (18) 0.007 (2) 0.014 (2)
O18 0.042 (3) 0.028 (3) 0.046 (3) 0.007 (2) 0.012 (3) 0.005 (2)
N1 0.010 (2) 0.013 (2) 0.014 (2) −0.001 (2) 0.0023 (18) −0.005 (2)
N2 0.012 (2) 0.006 (2) 0.014 (2) −0.001 (2) 0.0042 (18) 0.0029 (19)
N3 0.011 (2) 0.013 (2) 0.017 (2) 0.000 (2) 0.0055 (18) −0.004 (2)
C1 0.017 (3) 0.012 (3) 0.011 (3) −0.008 (2) 0.001 (2) −0.003 (2)
C2 0.011 (3) 0.018 (3) 0.015 (3) −0.003 (2) −0.002 (2) −0.006 (2)
C3 0.019 (3) 0.034 (4) 0.014 (3) −0.003 (3) 0.003 (3) 0.003 (3)
C4 0.017 (3) 0.052 (4) 0.019 (3) 0.004 (3) 0.008 (3) 0.005 (3)
C5 0.016 (3) 0.052 (4) 0.019 (3) 0.001 (3) 0.009 (3) −0.010 (3)
C6 0.009 (3) 0.023 (3) 0.019 (3) −0.001 (2) −0.003 (2) −0.007 (2)
C7 0.010 (3) 0.022 (3) 0.017 (3) 0.001 (3) 0.001 (2) −0.007 (2)
C8 0.014 (3) 0.010 (3) 0.011 (3) 0.000 (2) 0.001 (2) 0.002 (2)
C9 0.010 (3) 0.009 (3) 0.016 (3) 0.002 (2) 0.002 (2) 0.005 (2)
C10 0.013 (3) 0.018 (3) 0.020 (3) −0.001 (2) 0.004 (2) 0.005 (2)
C11 0.012 (3) 0.020 (3) 0.022 (3) 0.005 (2) 0.005 (2) 0.008 (2)
C12 0.015 (3) 0.015 (3) 0.021 (3) 0.004 (2) 0.009 (2) 0.003 (2)
C13 0.012 (3) 0.008 (3) 0.015 (3) 0.004 (2) 0.005 (2) 0.006 (2)
C14 0.017 (3) 0.010 (3) 0.013 (3) 0.002 (2) 0.006 (2) 0.005 (2)
C15 0.020 (3) 0.012 (3) 0.023 (3) 0.007 (2) 0.010 (3) 0.001 (2)
C16 0.015 (3) 0.014 (3) 0.019 (3) 0.006 (2) 0.012 (2) 0.001 (2)
C17 0.015 (3) 0.025 (3) 0.020 (3) 0.004 (3) 0.008 (3) 0.003 (3)
C18 0.014 (3) 0.039 (4) 0.020 (3) 0.007 (3) −0.002 (2) −0.002 (3)
C19 0.013 (3) 0.018 (3) 0.025 (3) 0.000 (3) −0.002 (3) −0.009 (3)
C20 0.011 (3) 0.013 (3) 0.019 (3) 0.000 (2) 0.006 (2) −0.006 (2)
C21 0.013 (3) 0.010 (3) 0.023 (3) 0.000 (2) 0.008 (3) −0.004 (2)
O19 0.032 (3) 0.038 (3) 0.048 (3) −0.013 (2) 0.014 (2) −0.013 (2)
O20 0.038 (3) 0.035 (3) 0.031 (3) 0.010 (2) 0.008 (2) −0.011 (2)
O21 0.029 (3) 0.016 (2) 0.031 (3) −0.002 (2) −0.007 (2) 0.0055 (19)
O22 0.070 (11) 0.046 (9) 0.048 (7) 0.012 (7) 0.041 (7) 0.017 (6)
O23 0.023 (5) 0.048 (6) 0.017 (4) −0.007 (5) 0.003 (4) −0.005 (4)
O22' 0.040 (8) 0.041 (8) 0.071 (9) −0.001 (6) 0.025 (6) 0.026 (6)
O23' 0.068 (8) 0.085 (10) 0.045 (7) −0.036 (7) 0.018 (6) −0.015 (6)
O24 0.034 (6) 0.040 (6) 0.043 (6) 0.003 (5) 0.013 (5) 0.003 (5)

Geometric parameters (Å, º)

Eu1—O5 2.423 (4) O14—H14A 0.85 (1)
Eu1—O7 2.434 (4) O14—H14B 0.85 (1)
Eu1—O1 2.435 (4) O15—H15A 0.85 (1)
Eu1—O3 2.441 (4) O15—H15B 0.85 (1)
Eu1—O11 2.447 (4) O16—H16A 0.78 (6)
Eu1—O9 2.481 (4) O16—H16B 0.84 (6)
Eu1—N2 2.520 (4) O17—H17A 0.85 (1)
Eu1—N1 2.521 (4) O17—H17B 0.85 (1)
Eu1—N3 2.557 (4) O18—H18A 0.85 (1)
Ca1—O8 i 2.270 (4) O18—H18B 0.85 (1)
Ca1—O8 2.270 (4) N1—C6 1.345 (7)
Ca1—O14 i 2.305 (4) N1—C2 1.347 (7)
Ca1—O14 2.305 (4) N2—C9 1.338 (7)
Ca1—O13 i 2.383 (4) N2—C13 1.340 (7)
Ca1—O13 2.383 (4) N3—C20 1.339 (7)
Ca1—H13A 2.70 (5) N3—C16 1.353 (7)
Ca1—H14A 2.70 (4) C1—C2 1.501 (8)
Ca2—O6 ii 2.415 (4) C2—C3 1.387 (8)
Ca2—O6 2.415 (4) C3—C4 1.383 (9)
Ca2—O2 iii 2.451 (4) C3—H3 0.9500
Ca2—O2 iv 2.451 (4) C4—C5 1.391 (9)
Ca2—O15 ii 2.466 (4) C4—H4 0.9500
Ca2—O15 2.466 (4) C5—C6 1.379 (8)
Ca2—O16 ii 2.493 (4) C5—H5 0.9500
Ca2—O16 2.493 (4) C6—C7 1.519 (8)
Ca2—H15B 2.74 (5) C8—C9 1.519 (7)
Ca3—O12 2.292 (4) C9—C10 1.378 (8)
Ca3—O12 v 2.292 (4) C10—C11 1.375 (8)
Ca3—O17 v 2.332 (4) C10—H10 0.9500
Ca3—O17 2.332 (4) C11—C12 1.400 (8)
Ca3—O18 2.334 (5) C11—H11 0.9500
Ca3—O18 v 2.334 (5) C12—C13 1.392 (8)
Ca3—H17B 2.76 (4) C12—H12 0.9500
Ca3—H18A 2.70 (5) C13—C14 1.495 (8)
O1—C1 1.276 (6) C15—C16 1.502 (8)
O2—C1 1.243 (6) C16—C17 1.390 (8)
O2—Ca2 vi 2.451 (4) C17—C18 1.381 (8)
O3—C7 1.274 (7) C17—H17 0.9500
O4—C7 1.243 (7) C18—C19 1.392 (9)
O5—C8 1.277 (6) C18—H18 0.9500
O6—C8 1.244 (6) C19—C20 1.375 (8)
O7—C14 1.267 (6) C19—H19 0.9500
O8—C14 1.257 (6) C20—C21 1.501 (8)
O9—C15 1.266 (7) O19—H19A 0.86 (1)
O10—C15 1.254 (7) O19—H19B 0.85 (1)
O11—C21 1.274 (6) O20—H20A 0.85 (1)
O12—C21 1.247 (7) O20—H20B 0.85 (1)
O13—H13A 0.85 (1) O21—H21A 0.85 (1)
O13—H13B 0.85 (1) O21—H21B 0.85 (1)
O5—Eu1—O7 127.97 (12) O12 v—Ca3—H17B 107.2 (11)
O5—Eu1—O1 91.03 (12) O17 v—Ca3—H17B 163.3 (7)
O7—Eu1—O1 75.97 (12) O17—Ca3—H17B 16.7 (7)
O5—Eu1—O3 76.07 (12) O18—Ca3—H17B 94.3 (12)
O7—Eu1—O3 149.31 (12) O18 v—Ca3—H17B 85.7 (12)
O1—Eu1—O3 127.54 (13) O12—Ca3—H18A 95.3 (15)
O5—Eu1—O11 148.83 (13) O12 v—Ca3—H18A 84.7 (15)
O7—Eu1—O11 77.98 (12) O17 v—Ca3—H18A 78.7 (7)
O1—Eu1—O11 78.07 (12) O17—Ca3—H18A 101.3 (7)
O3—Eu1—O11 87.52 (13) O18—Ca3—H18A 17.5 (8)
O5—Eu1—O9 77.22 (12) O18 v—Ca3—H18A 162.5 (8)
O7—Eu1—O9 87.93 (12) H17B—Ca3—H18A 111.7 (14)
O1—Eu1—O9 148.04 (13) C1—O1—Eu1 125.7 (3)
O3—Eu1—O9 78.80 (13) C1—O2—Ca2 vi 137.0 (4)
O11—Eu1—O9 125.83 (12) C7—O3—Eu1 125.3 (3)
O5—Eu1—N2 63.91 (13) C8—O5—Eu1 125.6 (3)
O7—Eu1—N2 64.10 (13) C8—O6—Ca2 137.2 (4)
O1—Eu1—N2 72.89 (13) C14—O7—Eu1 124.2 (3)
O3—Eu1—N2 135.96 (13) C14—O8—Ca1 153.3 (3)
O11—Eu1—N2 136.48 (13) C15—O9—Eu1 125.7 (4)
O9—Eu1—N2 75.26 (13) C21—O11—Eu1 125.9 (3)
O5—Eu1—N1 77.31 (13) C21—O12—Ca3 153.5 (4)
O7—Eu1—N1 133.20 (13) Ca1—O13—H13A 103 (4)
O1—Eu1—N1 63.64 (13) Ca1—O13—H13B 127 (4)
O3—Eu1—N1 63.93 (13) H13A—O13—H13B 111 (4)
O11—Eu1—N1 71.66 (13) Ca1—O14—H14A 109 (3)
O9—Eu1—N1 138.80 (13) Ca1—O14—H14B 141 (3)
N2—Eu1—N1 120.06 (13) H14A—O14—H14B 111 (5)
O5—Eu1—N3 133.78 (14) Ca2—O15—H15A 122 (4)
O7—Eu1—N3 74.84 (13) Ca2—O15—H15B 99 (4)
O1—Eu1—N3 135.19 (13) H15A—O15—H15B 110 (5)
O3—Eu1—N3 74.49 (13) Ca2—O16—H16A 118 (5)
O11—Eu1—N3 63.13 (13) Ca2—O16—H16B 103 (4)
O9—Eu1—N3 62.70 (13) H16A—O16—H16B 106 (6)
N2—Eu1—N3 121.28 (13) Ca3—O17—H17A 137 (4)
N1—Eu1—N3 118.61 (14) Ca3—O17—H17B 111 (4)
O8 i—Ca1—O8 179.999 (2) H17A—O17—H17B 111 (5)
O8 i—Ca1—O14 i 86.94 (14) Ca3—O18—H18A 107 (4)
O8—Ca1—O14 i 93.06 (14) Ca3—O18—H18B 131 (5)
O8 i—Ca1—O14 93.07 (14) H18A—O18—H18B 112 (6)
O8—Ca1—O14 86.93 (14) C6—N1—C2 119.0 (5)
O14 i—Ca1—O14 180.0 C6—N1—Eu1 120.3 (4)
O8 i—Ca1—O13 i 88.30 (14) C2—N1—Eu1 120.0 (4)
O8—Ca1—O13 i 91.70 (14) C9—N2—C13 119.5 (5)
O14 i—Ca1—O13 i 92.24 (14) C9—N2—Eu1 120.8 (3)
O14—Ca1—O13 i 87.76 (14) C13—N2—Eu1 119.7 (3)
O8 i—Ca1—O13 91.70 (14) C20—N3—C16 119.0 (5)
O8—Ca1—O13 88.30 (14) C20—N3—Eu1 120.1 (3)
O14 i—Ca1—O13 87.76 (14) C16—N3—Eu1 120.8 (3)
O14—Ca1—O13 92.24 (14) O2—C1—O1 125.8 (5)
O13 i—Ca1—O13 180.0 O2—C1—C2 118.6 (5)
O8 i—Ca1—H13A 92.6 (12) O1—C1—C2 115.5 (5)
O8—Ca1—H13A 87.4 (12) N1—C2—C3 122.4 (5)
O14 i—Ca1—H13A 70.1 (6) N1—C2—C1 114.5 (5)
O14—Ca1—H13A 109.9 (6) C3—C2—C1 123.0 (5)
O13 i—Ca1—H13A 162.2 (6) C4—C3—C2 118.0 (6)
O13—Ca1—H13A 17.8 (6) C4—C3—H3 121.0
O8 i—Ca1—H14A 103.8 (11) C2—C3—H3 121.0
O8—Ca1—H14A 76.2 (11) C3—C4—C5 119.9 (6)
O14 i—Ca1—H14A 162.7 (6) C3—C4—H4 120.0
O14—Ca1—H14A 17.3 (6) C5—C4—H4 120.0
O13 i—Ca1—H14A 101.5 (10) C6—C5—C4 118.6 (6)
O13—Ca1—H14A 78.5 (10) C6—C5—H5 120.7
H13A—Ca1—H14A 95.5 (12) C4—C5—H5 120.7
O6 ii—Ca2—O6 78.34 (19) N1—C6—C5 122.0 (6)
O6 ii—Ca2—O2 iii 113.44 (13) N1—C6—C7 114.2 (5)
O6—Ca2—O2 iii 141.21 (12) C5—C6—C7 123.6 (5)
O6 ii—Ca2—O2 iv 141.21 (12) O4—C7—O3 126.0 (5)
O6—Ca2—O2 iv 113.44 (13) O4—C7—C6 118.2 (5)
O2 iii—Ca2—O2 iv 81.20 (19) O3—C7—C6 115.8 (5)
O6 ii—Ca2—O15 ii 78.83 (13) O6—C8—O5 126.2 (5)
O6—Ca2—O15 ii 72.14 (13) O6—C8—C9 117.9 (5)
O2 iii—Ca2—O15 ii 144.61 (14) O5—C8—C9 115.9 (5)
O2 iv—Ca2—O15 ii 71.03 (13) N2—C9—C10 122.3 (5)
O6 ii—Ca2—O15 72.14 (13) N2—C9—C8 113.8 (5)
O6—Ca2—O15 78.83 (13) C10—C9—C8 123.9 (5)
O2 iii—Ca2—O15 71.03 (13) C11—C10—C9 118.8 (5)
O2 iv—Ca2—O15 144.61 (14) C11—C10—H10 120.6
O15 ii—Ca2—O15 142.3 (2) C9—C10—H10 120.6
O6 ii—Ca2—O16 ii 74.59 (13) C10—C11—C12 119.5 (5)
O6—Ca2—O16 ii 145.52 (14) C10—C11—H11 120.3
O2 iii—Ca2—O16 ii 70.74 (13) C12—C11—H11 120.3
O2 iv—Ca2—O16 ii 77.45 (14) C13—C12—C11 118.2 (5)
O15 ii—Ca2—O16 ii 81.92 (14) C13—C12—H12 120.9
O15—Ca2—O16 ii 111.92 (14) C11—C12—H12 120.9
O6 ii—Ca2—O16 145.52 (14) N2—C13—C12 121.6 (5)
O6—Ca2—O16 74.59 (13) N2—C13—C14 114.7 (5)
O2 iii—Ca2—O16 77.45 (14) C12—C13—C14 123.7 (5)
O2 iv—Ca2—O16 70.74 (13) O8—C14—O7 124.7 (5)
O15 ii—Ca2—O16 111.91 (14) O8—C14—C13 118.5 (5)
O15—Ca2—O16 81.92 (14) O7—C14—C13 116.8 (5)
O16 ii—Ca2—O16 137.8 (2) O10—C15—O9 125.4 (5)
O6 ii—Ca2—H15B 71.4 (11) O10—C15—C16 118.1 (5)
O6—Ca2—H15B 61.0 (6) O9—C15—C16 116.5 (5)
O2 iii—Ca2—H15B 86.9 (6) N3—C16—C17 121.9 (5)
O2 iv—Ca2—H15B 147.2 (11) N3—C16—C15 114.0 (5)
O15 ii—Ca2—H15B 128.1 (6) C17—C16—C15 124.1 (5)
O15—Ca2—H15B 17.9 (6) C18—C17—C16 118.5 (6)
O16 ii—Ca2—H15B 126.9 (9) C18—C17—H17 120.7
O16—Ca2—H15B 76.9 (12) C16—C17—H17 120.7
O12—Ca3—O12 v 180.00 (9) C17—C18—C19 119.3 (5)
O12—Ca3—O17 v 93.91 (15) C17—C18—H18 120.3
O12 v—Ca3—O17 v 86.09 (15) C19—C18—H18 120.3
O12—Ca3—O17 86.09 (15) C20—C19—C18 119.1 (6)
O12 v—Ca3—O17 93.91 (15) C20—C19—H19 120.5
O17 v—Ca3—O17 180.0 (3) C18—C19—H19 120.5
O12—Ca3—O18 90.53 (16) N3—C20—C19 122.1 (5)
O12 v—Ca3—O18 89.48 (16) N3—C20—C21 114.6 (5)
O17 v—Ca3—O18 95.84 (18) C19—C20—C21 123.3 (5)
O17—Ca3—O18 84.16 (18) O12—C21—O11 125.4 (5)
O12—Ca3—O18 v 89.47 (16) O12—C21—C20 118.5 (5)
O12 v—Ca3—O18 v 90.53 (16) O11—C21—C20 116.1 (5)
O17 v—Ca3—O18 v 84.16 (18) H19A—O19—H19B 109 (5)
O17—Ca3—O18 v 95.84 (18) H20A—O20—H20B 110 (5)
O18—Ca3—O18 v 180.0 H21A—O21—H21B 111 (4)
O12—Ca3—H17B 72.8 (11)
O5—Eu1—O1—C1 78.5 (4) O11—Eu1—N3—C20 1.3 (4)
O7—Eu1—O1—C1 −152.5 (4) O9—Eu1—N3—C20 −179.1 (4)
O3—Eu1—O1—C1 5.4 (5) N2—Eu1—N3—C20 131.3 (4)
O11—Eu1—O1—C1 −72.0 (4) N1—Eu1—N3—C20 −46.0 (4)
O9—Eu1—O1—C1 145.6 (4) O5—Eu1—N3—C16 30.0 (5)
N2—Eu1—O1—C1 140.8 (4) O7—Eu1—N3—C16 −98.5 (4)
N1—Eu1—O1—C1 3.2 (4) O1—Eu1—N3—C16 −149.5 (4)
N3—Eu1—O1—C1 −101.8 (4) O3—Eu1—N3—C16 82.3 (4)
O5—Eu1—O3—C7 −84.6 (4) O11—Eu1—N3—C16 177.5 (4)
O7—Eu1—O3—C7 129.9 (4) O9—Eu1—N3—C16 −2.9 (4)
O1—Eu1—O3—C7 −4.2 (5) N2—Eu1—N3—C16 −52.5 (4)
O11—Eu1—O3—C7 68.7 (4) N1—Eu1—N3—C16 130.2 (4)
O9—Eu1—O3—C7 −164.0 (4) Ca2 vi—O2—C1—O1 −8.5 (9)
N2—Eu1—O3—C7 −109.3 (4) Ca2 vi—O2—C1—C2 170.7 (3)
N1—Eu1—O3—C7 −2.1 (4) Eu1—O1—C1—O2 179.0 (4)
N3—Eu1—O3—C7 131.4 (4) Eu1—O1—C1—C2 −0.2 (6)
O7—Eu1—O5—C8 −0.5 (5) C6—N1—C2—C3 2.3 (8)
O1—Eu1—O5—C8 72.5 (4) Eu1—N1—C2—C3 −168.5 (4)
O3—Eu1—O5—C8 −159.0 (4) C6—N1—C2—C1 179.4 (5)
O11—Eu1—O5—C8 140.8 (4) Eu1—N1—C2—C1 8.6 (6)
O9—Eu1—O5—C8 −77.5 (4) O2—C1—C2—N1 175.2 (5)
N2—Eu1—O5—C8 2.1 (4) O1—C1—C2—N1 −5.5 (7)
N1—Eu1—O5—C8 135.1 (4) O2—C1—C2—C3 −7.8 (8)
N3—Eu1—O5—C8 −107.2 (4) O1—C1—C2—C3 171.5 (5)
O6 ii—Ca2—O6—C8 66.7 (5) N1—C2—C3—C4 −1.5 (9)
O2 iii—Ca2—O6—C8 −46.3 (6) C1—C2—C3—C4 −178.3 (5)
O2 iv—Ca2—O6—C8 −152.2 (5) C2—C3—C4—C5 −0.2 (9)
O15 ii—Ca2—O6—C8 148.6 (5) C3—C4—C5—C6 1.1 (10)
O15—Ca2—O6—C8 −7.1 (5) C2—N1—C6—C5 −1.3 (8)
O16 ii—Ca2—O6—C8 105.5 (5) Eu1—N1—C6—C5 169.5 (4)
O16—Ca2—O6—C8 −91.7 (5) C2—N1—C6—C7 −177.7 (5)
O5—Eu1—O7—C14 9.2 (4) Eu1—N1—C6—C7 −7.0 (6)
O1—Eu1—O7—C14 −71.0 (4) C4—C5—C6—N1 −0.4 (9)
O3—Eu1—O7—C14 145.0 (4) C4—C5—C6—C7 175.7 (6)
O11—Eu1—O7—C14 −151.5 (4) Eu1—O3—C7—O4 −179.7 (4)
O9—Eu1—O7—C14 81.2 (4) Eu1—O3—C7—C6 −0.5 (7)
N2—Eu1—O7—C14 6.6 (4) N1—C6—C7—O4 −175.9 (5)
N1—Eu1—O7—C14 −101.4 (4) C5—C6—C7—O4 7.8 (9)
N3—Eu1—O7—C14 143.4 (4) N1—C6—C7—O3 4.9 (7)
O14 i—Ca1—O8—C14 −123.5 (8) C5—C6—C7—O3 −171.4 (5)
O14—Ca1—O8—C14 56.5 (8) Ca2—O6—C8—O5 −0.2 (9)
O13 i—Ca1—O8—C14 144.1 (8) Ca2—O6—C8—C9 178.4 (3)
O13—Ca1—O8—C14 −35.9 (8) Eu1—O5—C8—O6 176.3 (4)
O5—Eu1—O9—C15 −157.9 (4) Eu1—O5—C8—C9 −2.3 (6)
O7—Eu1—O9—C15 72.4 (4) C13—N2—C9—C10 1.6 (8)
O1—Eu1—O9—C15 131.3 (4) Eu1—N2—C9—C10 −176.9 (4)
O3—Eu1—O9—C15 −79.8 (4) C13—N2—C9—C8 179.7 (4)
O11—Eu1—O9—C15 −1.2 (5) Eu1—N2—C9—C8 1.2 (6)
N2—Eu1—O9—C15 136.1 (4) O6—C8—C9—N2 −178.1 (4)
N1—Eu1—O9—C15 −104.8 (4) O5—C8—C9—N2 0.6 (7)
N3—Eu1—O9—C15 −1.6 (4) O6—C8—C9—C10 −0.1 (8)
O5—Eu1—O11—C21 133.3 (4) O5—C8—C9—C10 178.7 (5)
O7—Eu1—O11—C21 −77.0 (4) N2—C9—C10—C11 −1.0 (8)
O1—Eu1—O11—C21 −155.0 (4) C8—C9—C10—C11 −178.9 (5)
O3—Eu1—O11—C21 75.8 (4) C9—C10—C11—C12 −0.1 (8)
O9—Eu1—O11—C21 1.5 (5) C10—C11—C12—C13 0.6 (8)
N2—Eu1—O11—C21 −106.3 (4) C9—N2—C13—C12 −1.0 (7)
N1—Eu1—O11—C21 139.1 (4) Eu1—N2—C13—C12 177.5 (4)
N3—Eu1—O11—C21 1.9 (4) C9—N2—C13—C14 −179.4 (4)
O17 v—Ca3—O12—C21 −129.5 (8) Eu1—N2—C13—C14 −0.9 (6)
O17—Ca3—O12—C21 50.5 (8) C11—C12—C13—N2 0.0 (8)
O18—Ca3—O12—C21 134.6 (8) C11—C12—C13—C14 178.2 (5)
O18 v—Ca3—O12—C21 −45.4 (8) Ca1—O8—C14—O7 −107.4 (8)
O5—Eu1—N1—C6 85.5 (4) Ca1—O8—C14—C13 73.3 (9)
O7—Eu1—N1—C6 −143.7 (4) Eu1—O7—C14—O8 171.1 (4)
O1—Eu1—N1—C6 −176.9 (4) Eu1—O7—C14—C13 −9.5 (6)
O3—Eu1—N1—C6 4.9 (4) N2—C13—C14—O8 −174.2 (5)
O11—Eu1—N1—C6 −91.5 (4) C12—C13—C14—O8 7.5 (8)
O9—Eu1—N1—C6 32.4 (5) N2—C13—C14—O7 6.5 (7)
N2—Eu1—N1—C6 134.8 (4) C12—C13—C14—O7 −171.9 (5)
N3—Eu1—N1—C6 −47.8 (4) Eu1—O9—C15—O10 −173.7 (4)
O5—Eu1—N1—C2 −103.9 (4) Eu1—O9—C15—C16 5.3 (7)
O7—Eu1—N1—C2 26.9 (5) C20—N3—C16—C17 2.0 (8)
O1—Eu1—N1—C2 −6.3 (4) Eu1—N3—C16—C17 −174.3 (4)
O3—Eu1—N1—C2 175.6 (4) C20—N3—C16—C15 −177.5 (5)
O11—Eu1—N1—C2 79.2 (4) Eu1—N3—C16—C15 6.3 (6)
O9—Eu1—N1—C2 −156.9 (3) O10—C15—C16—N3 171.7 (5)
N2—Eu1—N1—C2 −54.5 (4) O9—C15—C16—N3 −7.4 (7)
N3—Eu1—N1—C2 122.9 (4) O10—C15—C16—C17 −7.7 (8)
O5—Eu1—N2—C9 −1.6 (3) O9—C15—C16—C17 173.2 (5)
O7—Eu1—N2—C9 176.1 (4) N3—C16—C17—C18 −1.8 (9)
O1—Eu1—N2—C9 −101.5 (4) C15—C16—C17—C18 177.6 (5)
O3—Eu1—N2—C9 25.3 (4) C16—C17—C18—C19 0.6 (9)
O11—Eu1—N2—C9 −151.8 (3) C17—C18—C19—C20 0.4 (9)
O9—Eu1—N2—C9 81.1 (4) C16—N3—C20—C19 −1.0 (8)
N1—Eu1—N2—C9 −57.2 (4) Eu1—N3—C20—C19 175.3 (4)
N3—Eu1—N2—C9 125.5 (4) C16—N3—C20—C21 −180.0 (5)
O5—Eu1—N2—C13 179.9 (4) Eu1—N3—C20—C21 −3.7 (6)
O7—Eu1—N2—C13 −2.4 (3) C18—C19—C20—N3 −0.2 (9)
O1—Eu1—N2—C13 80.0 (4) C18—C19—C20—C21 178.7 (5)
O3—Eu1—N2—C13 −153.2 (3) Ca3—O12—C21—O11 −98.7 (9)
O11—Eu1—N2—C13 29.7 (4) Ca3—O12—C21—C20 81.6 (9)
O9—Eu1—N2—C13 −97.3 (4) Eu1—O11—C21—O12 175.9 (4)
N1—Eu1—N2—C13 124.4 (4) Eu1—O11—C21—C20 −4.4 (7)
N3—Eu1—N2—C13 −53.0 (4) N3—C20—C21—O12 −175.2 (5)
O5—Eu1—N3—C20 −146.2 (4) C19—C20—C21—O12 5.8 (8)
O7—Eu1—N3—C20 85.3 (4) N3—C20—C21—O11 5.1 (7)
O1—Eu1—N3—C20 34.3 (5) C19—C20—C21—O11 −173.9 (5)
O3—Eu1—N3—C20 −93.9 (4)

Symmetry codes: (i) − x+1, − y, − z; (ii) − x+1, y, − z+1/2; (iii) x, y+1, z; (iv) − x+1, y+1, − z+1/2; (v) − x, − y, − z; (vi) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H··· A D—H H··· A D··· A D—H··· A
O13—H13 A···O10 vii 0.85 (1) 1.97 (2) 2.796 (6) 163 (5)
O13—H13 B···O20 viii 0.85 (1) 1.85 (1) 2.696 (6) 175 (6)
O14—H14 A···O16 vi 0.85 (1) 1.96 (2) 2.774 (6) 160 (5)
O14—H14 B···O9 vi 0.85 (1) 1.91 (2) 2.723 (5) 160 (5)
O15—H15 A···O21 iii 0.85 (1) 1.99 (1) 2.839 (6) 172 (6)
O15—H15 B···O5 0.85 (1) 1.90 (1) 2.734 (5) 165 (5)
O16—H16 A···O13 iii 0.78 (6) 2.38 (7) 3.079 (6) 150 (6)
O16—H16 B···O1 iii 0.84 (6) 1.88 (7) 2.704 (6) 169 (6)
O17—H17 A···O3 vi 0.85 (1) 1.91 (1) 2.745 (6) 167 (5)
O17—H17 B···O19 ix 0.85 (1) 1.93 (3) 2.722 (7) 155 (6)
O18—H18 A···O22′ x 0.85 (1) 2.37 (6) 2.990 (15) 130 (6)
O18—H18 A···O22 x 0.85 (1) 2.16 (7) 2.657 (14) 117 (6)
O18—H18 B···O4 vi 0.85 (1) 1.98 (2) 2.772 (6) 155 (5)
O19—H19 A···O24 xi 0.86 (1) 2.31 (3) 3.12 (2) 159 (6)
O19—H19 B···O7 xii 0.85 (1) 2.07 (4) 2.828 (6) 148 (6)
O20—H20 A···O15 0.85 (1) 2.04 (2) 2.862 (6) 161 (6)
O20—H20 B···O23 0.85 (1) 2.03 (4) 2.758 (10) 143 (6)
O20—H20 B···O22′ xiii 0.85 (1) 2.32 (4) 3.042 (13) 143 (5)
O21—H21 A···O11 0.85 (1) 1.94 (2) 2.774 (6) 167 (6)
O21—H21 B···O17 0.85 (1) 2.42 (4) 3.113 (7) 138 (5)

Symmetry codes: (iii) x, y+1, z; (vi) x, y−1, z; (vii) − x+1, − y+1, − z; (viii) − x+1, y−1, − z+1/2; (ix) x, y, z−1; (x) − x, − y+1, − z+1; (xi) − x+1, − y+1, − z+1; (xii) x, y, z+1; (xiii) x, − y+2, z−1/2.

References

1  

Rigaku/MSC (2009). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

2  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

3  

Zhao, X.-Q., Cui, P., Zhao, B., Shi, W. & Cheng, P. (2011). Dalton Trans. 40, 805–819.

4  

Zhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2006). Chem. Eur. J. 12, 149–158.

5  

Zhao, X.-Q., Zhao, B., Ma, Y., Shi, W., Cheng, P., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 5832–5834.

6  

Zhao, X.-Q., Zhao, B., Shi, W. & Cheng, P. (2009). CrystEngComm, 11, 1261–1269.

7  

Zhao, X.-Q., Zuo, Y., Gao, D.-L., Zhao, B., Shi, W. & Cheng, P. (2009). Cryst. Growth Des. 9, 3948–3957.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
O13—H13 A⋯O10 i 0.85 (1) 1.97 (2) 2.796 (6) 163 (5)
O13—H13 B⋯O20 ii 0.85 (1) 1.85 (1) 2.696 (6) 175 (6)
O14—H14 A⋯O16 iii 0.85 (1) 1.96 (2) 2.774 (6) 160 (5)
O14—H14 B⋯O9 iii 0.85 (1) 1.91 (2) 2.723 (5) 160 (5)
O15—H15 A⋯O21 iv 0.85 (1) 1.99 (1) 2.839 (6) 172 (6)
O15—H15 B⋯O5 0.85 (1) 1.90 (1) 2.734 (5) 165 (5)
O16—H16 A⋯O13 iv 0.78 (6) 2.38 (7) 3.079 (6) 150 (6)
O16—H16 B⋯O1 iv 0.84 (6) 1.88 (7) 2.704 (6) 169 (6)
O17—H17 A⋯O3 iii 0.85 (1) 1.91 (1) 2.745 (6) 167 (5)
O17—H17 B⋯O19 v 0.85 (1) 1.93 (3) 2.722 (7) 155 (6)
O18—H18 A⋯O22′ vi 0.85 (1) 2.37 (6) 2.990 (15) 130 (6)
O18—H18 A⋯O22 vi 0.85 (1) 2.16 (7) 2.657 (14) 117 (6)
O18—H18 B⋯O4 iii 0.85 (1) 1.98 (2) 2.772 (6) 155 (5)
O19—H19 A⋯O24 vii 0.86 (1) 2.31 (3) 3.12 (2) 159 (6)
O19—H19 B⋯O7 viii 0.85 (1) 2.07 (4) 2.828 (6) 148 (6)
O20—H20 A⋯O15 0.85 (1) 2.04 (2) 2.862 (6) 161 (6)
O20—H20 B⋯O23 0.85 (1) 2.03 (4) 2.758 (10) 143 (6)
O20—H20 B⋯O22′ ix 0.85 (1) 2.32 (4) 3.042 (13) 143 (5)
O21—H21 A⋯O11 0.85 (1) 1.94 (2) 2.774 (6) 167 (6)
O21—H21 B⋯O17 0.85 (1) 2.42 (4) 3.113 (7) 138 (5)

Symmetry codes: (i) e-68-0m685-efi4.jpg ; (ii) e-68-0m685-efi5.jpg ; (iii) e-68-0m685-efi6.jpg ; (iv) e-68-0m685-efi7.jpg ; (v) e-68-0m685-efi8.jpg ; (vi) e-68-0m685-efi9.jpg ; (vii) e-68-0m685-efi10.jpg ; (viii) e-68-0m685-efi11.jpg ; (ix) e-68-0m685-efi12.jpg .