Bis(2-methyl­piperidinium) penta­chlorido­anti­monate(III)

Xu, Qian a * [a ] Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China

Abstract

The asymmetric unit of the title compound, (C 6H 14N) 2[SbCl 5], contains one cation and half of the anion on a special position (specifically, the Sb III ion and three chloride anions are situated on a mirror plane). In the [SbCl 5] 2− unit, the Sb III ion is coordinated by five chloride anions [Sb—Cl = 2.3721 (11)–2.6656 (12) Å] in a distorted square-pyramidal geometry. However, one chloride anion from a neighbouring [SbCl 5] 2− unit provides a short Sb⋯Cl contact of 3.3600 (12) Å and completes the Sb coordination environment up to an elongated octa­hedron. In the crystal, N—H⋯Cl hydrogen bonds link cations and anions into columns propagating along [100].

Related literature  

For the crystal structure of bis­(4-benzyl­piperidinium) penta­chloridoanti­monate(III), see: Marsh (1995 ). For background to ferroelectric metal-organic frameworks, see: Fu et al. (2009 ); Ye et al. (2006 ); Zhang et al. (2008 , 2010 ). e-68-0m671-scheme1.jpg

Experimental  

Crystal data  

  • (C 6H 14N) 2[SbCl 5]

  • M r = 499.36

  • Orthorhombic, e-68-0m671-efi1.jpg

  • a = 7.5995 (15) Å

  • b = 23.165 (5) Å

  • c = 11.453 (2) Å

  • V = 2016.2 (7) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm −1

  • T = 293 K

  • 0.28 × 0.25 × 0.21 mm

Data collection  

  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan ( CrystalClear; Rigaku, 2005 ) T min = 0.421, T max = 0.558

  • 19754 measured reflections

  • 2361 independent reflections

  • 1938 reflections with I > 2σ( I)

  • R int = 0.061

Refinement  

  • R[ F 2 > 2σ( F 2)] = 0.033

  • wR( F 2) = 0.065

  • S = 1.08

  • 2361 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρ max = 0.58 e Å −3

  • Δρ min = −0.52 e Å −3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006 ); cell refinement: SCXmini Benchtop Crystallography System Software; data reduction: SCXmini Benchtop Crystallography System Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812017163/cv5279sup1.cif

e-68-0m671-sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017163/cv5279Isup2.hkl

e-68-0m671-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5279).

Acknowledgements

This work was supported by Southeast University.

Appendices

supplementary crystallographic information

Comment

As a contribution to a search for new ferroelectric materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010), we have synthesized the title compound, (I). Herewith we present its crystal structure.

The asymmetric unit of (I), 2(C 6H 14N) +[SbCl 5] 2-, contains one cation and one-half of the anion in a special position (Fig. 1). The Sb1 atoms coordinated in a slightly distorted square-pyramidal geometry by five Cl atoms and distance of the top Cl2 and Sb1 is 2.3721 (11) Å much shorter than the mean values of other Sb—Cl[2.636 (11) Å]. The bond angles around the Sb1 are in the range 84.93 (2)–91.454 (19)° and correspond to those observed in the related compound 2(C 12H 18N) +[SbCl 5] 2- (Marsh, 1995).

In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 1) link cations and anions into columns propagated in [100] (Fig. 2). In the title compound, no dielectric anomalies were observed in the range from 190 K to its melting point, which is more than 357 K.

Experimental

The mixture of SbCl 3(1.1 g, 5 mmol) and 2-methypiperidine (1.05 g, 10 mmol) in hydrochloric acid solution was stirred for several minutes at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.98 Å and N—H = 0.90 Å, and with U iso(H) = 1.2–1.5 U iso(C, N).

Figures

Fig. 1.

The molecular structure of the (I), with the displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) x, 0.5 - y, z].

The molecular structure of the (I), with the displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) x, 0.5 - y, z].
Fig. 2.

A portion of the packing diagram with hydrogen bonds shown as dashed lines.

A portion of the packing diagram with hydrogen bonds shown as dashed lines.

Crystal data

(C 6H 14N) 2[SbCl 5] F(000) = 1000
M r = 499.36 D x = 1.645 Mg m 3
Orthorhombic, P n m a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 2361 reflections
a = 7.5995 (15) Å θ = 2.2–27.5°
b = 23.165 (5) Å µ = 2.03 mm 1
c = 11.453 (2) Å T = 293 K
V = 2016.2 (7) Å 3 Block, colourless
Z = 4 0.28 × 0.25 × 0.21 mm

Data collection

Rigaku Mercury70 CCD diffractometer 2361 independent reflections
Radiation source: fine-focus sealed tube 1938 reflections with I > 2σ( I)
Graphite monochromator R int = 0.061
ω scans θ max = 27.5°, θ min = 3.2°
Absorption correction: multi-scan ( CrystalClear; Rigaku, 2005) h = −9→9
T min = 0.421, T max = 0.558 k = −30→30
19754 measured reflections l = −14→14

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR( F 2) = 0.065 H-atom parameters constrained
S = 1.08 w = 1/[σ 2( F o 2) + (0.0181 P) 2 + 1.8699 P] where P = ( F o 2 + 2 F c 2)/3
2361 reflections (Δ/σ) max = 0.001
98 parameters Δρ max = 0.58 e Å 3
0 restraints Δρ min = −0.52 e Å 3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
C1 0.8199 (5) 0.1245 (2) −0.1957 (3) 0.0703 (12)
H1A 0.7817 0.1631 −0.2129 0.105*
H1B 0.7841 0.0991 −0.2575 0.105*
H1C 0.9457 0.1238 −0.1887 0.105*
C2 0.7387 (5) 0.10494 (17) −0.0830 (3) 0.0554 (10)
H2 0.6106 0.1081 −0.0900 0.066*
C3 0.7834 (6) 0.04338 (18) −0.0511 (4) 0.0750 (13)
H3A 0.7347 0.0177 −0.1098 0.090*
H3B 0.9103 0.0388 −0.0519 0.090*
C4 0.7143 (7) 0.0260 (2) 0.0672 (4) 0.0866 (15)
H4A 0.7536 −0.0128 0.0855 0.104*
H4B 0.5866 0.0259 0.0659 0.104*
C5 0.7785 (6) 0.06724 (18) 0.1599 (4) 0.0707 (12)
H5A 0.7284 0.0566 0.2348 0.085*
H5B 0.9055 0.0647 0.1661 0.085*
C6 0.7275 (5) 0.12723 (16) 0.1310 (3) 0.0552 (10)
H6A 0.7741 0.1534 0.1895 0.066*
H6B 0.6002 0.1306 0.1314 0.066*
N1 0.7977 (4) 0.14369 (12) 0.0122 (3) 0.0499 (7)
H1D 0.7632 0.1799 −0.0044 0.060*
H1E 0.9160 0.1435 0.0147 0.060*
Cl1 0.73805 (11) 0.13613 (4) 0.45405 (8) 0.0508 (2)
Cl2 0.58634 (15) 0.2500 0.61136 (10) 0.0463 (3)
Cl3 1.05345 (15) 0.2500 0.57047 (11) 0.0489 (3)
Cl4 0.48085 (16) 0.2500 0.31467 (11) 0.0529 (3)
Sb1 0.76256 (3) 0.2500 0.44041 (2) 0.03097 (9)

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
C1 0.070 (3) 0.095 (3) 0.046 (2) −0.005 (2) −0.001 (2) −0.007 (2)
C2 0.047 (2) 0.065 (2) 0.054 (2) 0.0012 (18) −0.0107 (18) −0.0133 (18)
C3 0.090 (3) 0.048 (2) 0.088 (3) −0.004 (2) 0.006 (3) −0.017 (2)
C4 0.111 (4) 0.051 (3) 0.098 (4) −0.014 (3) 0.008 (3) −0.005 (3)
C5 0.077 (3) 0.071 (3) 0.064 (3) −0.007 (2) −0.003 (2) 0.012 (2)
C6 0.065 (2) 0.051 (2) 0.050 (2) −0.0070 (19) 0.0054 (19) −0.0070 (17)
N1 0.0522 (17) 0.0429 (17) 0.0547 (18) 0.0026 (14) −0.0054 (15) −0.0050 (14)
Cl1 0.0496 (5) 0.0453 (5) 0.0576 (5) 0.0051 (4) 0.0006 (4) −0.0039 (4)
Cl2 0.0521 (7) 0.0532 (7) 0.0336 (6) 0.000 0.0144 (5) 0.000
Cl3 0.0438 (6) 0.0535 (7) 0.0493 (7) 0.000 −0.0117 (6) 0.000
Cl4 0.0481 (7) 0.0584 (8) 0.0523 (7) 0.000 −0.0189 (6) 0.000
Sb1 0.02942 (15) 0.03721 (16) 0.02627 (14) 0.000 0.00072 (12) 0.000

Geometric parameters (Å, º)

C1—C2 1.500 (5) C5—C6 1.480 (5)
C1—H1A 0.9600 C5—H5A 0.9700
C1—H1B 0.9600 C5—H5B 0.9700
C1—H1C 0.9600 C6—N1 1.511 (5)
C2—N1 1.481 (4) C6—H6A 0.9700
C2—C3 1.511 (6) C6—H6B 0.9700
C2—H2 0.9800 N1—H1D 0.9000
C3—C4 1.509 (6) N1—H1E 0.9000
C3—H3A 0.9700 Cl1—Sb1 2.6491 (10)
C3—H3B 0.9700 Cl2—Sb1 2.3721 (11)
C4—C5 1.510 (6) Cl3—Sb1 2.6656 (12)
C4—H4A 0.9700 Cl4—Sb1 2.5802 (12)
C4—H4B 0.9700 Sb1—Cl1 i 2.6491 (10)
C2—C1—H1A 109.5 C4—C5—H5A 109.5
C2—C1—H1B 109.5 C6—C5—H5B 109.5
H1A—C1—H1B 109.5 C4—C5—H5B 109.5
C2—C1—H1C 109.5 H5A—C5—H5B 108.1
H1A—C1—H1C 109.5 C5—C6—N1 110.3 (3)
H1B—C1—H1C 109.5 C5—C6—H6A 109.6
N1—C2—C1 109.0 (3) N1—C6—H6A 109.6
N1—C2—C3 109.0 (3) C5—C6—H6B 109.6
C1—C2—C3 113.6 (3) N1—C6—H6B 109.6
N1—C2—H2 108.4 H6A—C6—H6B 108.1
C1—C2—H2 108.4 C2—N1—C6 113.8 (3)
C3—C2—H2 108.4 C2—N1—H1D 108.8
C4—C3—C2 113.0 (4) C6—N1—H1D 108.8
C4—C3—H3A 109.0 C2—N1—H1E 108.8
C2—C3—H3A 109.0 C6—N1—H1E 108.8
C4—C3—H3B 109.0 H1D—N1—H1E 107.7
C2—C3—H3B 109.0 Cl2—Sb1—Cl4 89.56 (5)
H3A—C3—H3B 107.8 Cl2—Sb1—Cl1 84.93 (2)
C3—C4—C5 110.5 (4) Cl4—Sb1—Cl1 88.54 (2)
C3—C4—H4A 109.6 Cl2—Sb1—Cl1 i 84.93 (2)
C5—C4—H4A 109.6 Cl4—Sb1—Cl1 i 88.542 (19)
C3—C4—H4B 109.6 Cl1—Sb1—Cl1 i 169.47 (4)
C5—C4—H4B 109.6 Cl2—Sb1—Cl3 90.40 (4)
H4A—C4—H4B 108.1 Cl4—Sb1—Cl3 179.96 (4)
C6—C5—C4 110.6 (4) Cl1—Sb1—Cl3 91.454 (19)
C6—C5—H5A 109.5 Cl1 i—Sb1—Cl3 91.454 (19)
N1—C2—C3—C4 53.2 (5) C4—C5—C6—N1 −56.7 (5)
C1—C2—C3—C4 175.0 (4) C1—C2—N1—C6 −178.6 (3)
C2—C3—C4—C5 −55.2 (6) C3—C2—N1—C6 −54.0 (4)
C3—C4—C5—C6 56.5 (5) C5—C6—N1—C2 57.2 (4)

Symmetry code: (i) x, − y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H··· A D—H H··· A D··· A D—H··· A
N1—H1 D···Cl3 ii 0.90 2.40 3.226 (3) 153
N1—H1 E···Cl1 iii 0.90 2.48 3.373 (3) 173

Symmetry codes: (ii) x−1/2, y, − z+1/2; (iii) x+1/2, y, − z+1/2.

References

1  

Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.

2  

Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.

3  

Marsh, R. E. (1995). Acta Cryst. B 51, 897–907.

4  

Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.

5  

Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.

6  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

7  

Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.

8  

Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.

9  

Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
N1—H1 D⋯Cl3 i 0.90 2.40 3.226 (3) 153
N1—H1 E⋯Cl1 ii 0.90 2.48 3.373 (3) 173

Symmetry codes: (i) e-68-0m671-efi2.jpg ; (ii) e-68-0m671-efi3.jpg .