Butyl­triethyl­ammonium tetra­chlorido­ferrate(III)

Jin, Lei a * Li, Yong-Jun a [a ] College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People’s Republic of China

Abstract

In the title compound, (C 10H 24N)[FeCl 4], no classical hydrogen bonds are observed. The butyl­triethyl­ammonium cations inter­act with the tetra­hedral [FeCl 4] anion through weak C—H⋯Cl inter­actions, forming a three-dimensional network.

Related literature  

For background to mol­ecular–ionic and ferroelectric–dielectric compounds, see: Hay & Geib (2005 ); Zhang et al. (2010 ). e-68-0m656-scheme1.jpg

Experimental  

Crystal data  

  • (C 10H 24N)[FeCl 4]

  • M r = 355.95

  • Monoclinic, e-68-0m656-efi1.jpg

  • a = 7.6197 (15) Å

  • b = 11.671 (2) Å

  • c = 18.473 (4) Å

  • β = 91.51 (3)°

  • V = 1642.2 (6) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm −1

  • T = 293 K

  • 0.28 × 0.24 × 0.20 mm

Data collection  

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan ( CrystalClear; Rigaku, 2005 ) T min = 0.655, T max = 0.734

  • 16819 measured reflections

  • 3754 independent reflections

  • 2766 reflections with I > 2σ( I)

  • R int = 0.052

Refinement  

  • R[ F 2 > 2σ( F 2)] = 0.048

  • wR( F 2) = 0.117

  • S = 1.10

  • 3754 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρ max = 0.30 e Å −3

  • Δρ min = −0.53 e Å −3

Data collection: CrystalClear (Rigaku, 2005 ); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: SHELXTL (Sheldrick, 2008 ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812017047/ez2288sup1.cif

e-68-0m656-sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017047/ez2288Isup2.hkl

e-68-0m656-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2288).

Acknowledgements

The author thanks the Ordered Matter Science Research Centre, Southeast University.

Appendices

supplementary crystallographic information

Comment

In our laboratory, we synthesize simple molecular–ionic compounds containing organic-ammonium cations and anions due to the tunability of their special structural features and their ferroelectric-dielectric properties (Hay & Geib, 2005; Zhang et al., 2010). Herein, the crystal structure of the title compound is reported.

The asymmetric unit of the title compound, (C 10H 24N +).(FeCl 4 -) consists of one tetrachloroferrate anion unit and one butyltriethylammonium cation (Fig 1). In the structure, the Fe III ion adopts a distorted tetrahedral geometry surrounded by four Cl - anions with the Fe—Cl bond distances being in the range of 2.1611 (9)–2.1823 (10)? and the Cl–Fe–Cl bond angles being in the range of 109.26 (5)–110.18 (5) (5)°. There are no classic hydrogen bonds found, although weak intermolecular C—H···Cl interactions link the butyltriethylammonium cations and the tetrahedral FeCl 4 - anion into a three-dimensional network.

Experimental

In room temperaturebutyltriethylammonium(5 mmol,1.17 g) were dissolved in 30 ml water, then FeCl 3.6H 2O (5 mmol, 1.35 g) was added into the previous solution slowly with properly sirring. An orange solid appeared immediately and the solid was collected by filtration. Plate orange single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above filtrate after a week in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T 0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement

H atoms were placed in calculated positions C—H = 0.96 Å and 0.97 Å for C sp 3 atoms), assigned fixed U iso values [ U iso = 1.2 Ueq(C sp 2 /N) and 1.5 Ueq(C sp 3 )] and allowed to ride.

Figures

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.

The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.

Crystal data

(C 10H 24N)[FeCl 4] Z = 4
M r = 355.95 F(000) = 740
Monoclinic, P2 1/ c D x = 1.440 Mg m 3
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.6197 (15) Å θ = 3.2–27.5°
b = 11.671 (2) Å µ = 1.55 mm 1
c = 18.473 (4) Å T = 293 K
β = 91.51 (3)° Block, orange
V = 1642.2 (6) Å 3 0.28 × 0.24 × 0.20 mm

Data collection

Rigaku Mercury2 diffractometer 3754 independent reflections
Radiation source: fine-focus sealed tube 2766 reflections with I > 2σ( I)
Graphite monochromator R int = 0.052
Detector resolution: 13.6612 pixels mm -1 θ max = 27.5°, θ min = 3.2°
CCD_Profile_fitting scans h = −9→9
Absorption correction: multi-scan ( CrystalClear; Rigaku, 2005) k = −15→15
T min = 0.655, T max = 0.734 l = −23→23
16819 measured reflections

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR( F 2) = 0.117 H-atom parameters constrained
S = 1.10 w = 1/[σ 2( F o 2) + (0.0447 P) 2 + 0.8101 P] where P = ( F o 2 + 2 F c 2)/3
3754 reflections (Δ/σ) max < 0.001
149 parameters Δρ max = 0.30 e Å 3
0 restraints Δρ min = −0.53 e Å 3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
C1 0.3896 (4) 0.6311 (3) 0.58003 (19) 0.0585 (9)
H1A 0.3166 0.6969 0.5712 0.088*
H1B 0.3229 0.5726 0.6033 0.088*
H1C 0.4312 0.6025 0.5349 0.088*
C2 0.5419 (4) 0.6641 (2) 0.62761 (16) 0.0415 (7)
H2A 0.6114 0.5960 0.6375 0.050*
H2B 0.4974 0.6906 0.6734 0.050*
C3 0.8471 (5) 0.6102 (3) 0.5330 (2) 0.0643 (10)
H3A 0.9425 0.6209 0.5673 0.096*
H3B 0.8928 0.5938 0.4862 0.096*
H3C 0.7754 0.5475 0.5481 0.096*
C4 0.7386 (4) 0.7171 (3) 0.52879 (16) 0.0424 (7)
H4A 0.6438 0.7052 0.4935 0.051*
H4B 0.8112 0.7787 0.5110 0.051*
C5 0.9389 (4) 0.8585 (3) 0.63699 (19) 0.0554 (9)
H5A 0.9974 0.8332 0.5944 0.083*
H5B 1.0227 0.8654 0.6765 0.083*
H5C 0.8849 0.9315 0.6278 0.083*
C6 0.8021 (4) 0.7737 (3) 0.65603 (16) 0.0441 (7)
H6A 0.7472 0.7990 0.7001 0.053*
H6B 0.8589 0.7010 0.6664 0.053*
C7 0.2880 (5) 1.0847 (3) 0.6797 (2) 0.0670 (10)
H7A 0.2027 1.0362 0.7017 0.101*
H7B 0.2314 1.1524 0.6612 0.101*
H7C 0.3765 1.1057 0.7152 0.101*
C8 0.3716 (4) 1.0216 (3) 0.61889 (18) 0.0512 (8)
H8A 0.4515 1.0728 0.5947 0.061*
H8B 0.2811 0.9988 0.5839 0.061*
C9 0.4705 (4) 0.9172 (3) 0.64418 (17) 0.0473 (8)
H9A 0.5563 0.9387 0.6815 0.057*
H9B 0.3897 0.8629 0.6649 0.057*
C10 0.5615 (4) 0.8626 (2) 0.58253 (15) 0.0372 (6)
H10A 0.6427 0.9180 0.5631 0.045*
H10B 0.4744 0.8461 0.5447 0.045*
Cl1 0.44676 (12) 0.65139 (8) 0.36000 (6) 0.0695 (3)
Cl2 0.19519 (11) 0.85280 (7) 0.25806 (4) 0.0545 (2)
Cl3 −0.01438 (13) 0.61475 (8) 0.33742 (5) 0.0689 (3)
Cl4 0.15637 (12) 0.84172 (8) 0.44790 (4) 0.0573 (2)
Fe1 0.19494 (6) 0.73961 (4) 0.35064 (2) 0.04185 (15)
N1 0.6607 (3) 0.75470 (18) 0.59891 (11) 0.0334 (5)

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
C1 0.0511 (19) 0.062 (2) 0.062 (2) −0.0149 (16) −0.0058 (17) 0.0060 (18)
C2 0.0437 (16) 0.0405 (16) 0.0406 (16) −0.0044 (13) 0.0042 (13) 0.0069 (13)
C3 0.070 (2) 0.054 (2) 0.070 (2) 0.0133 (18) 0.019 (2) −0.0038 (18)
C4 0.0472 (17) 0.0459 (17) 0.0345 (16) 0.0019 (13) 0.0081 (13) −0.0029 (13)
C5 0.0479 (19) 0.063 (2) 0.054 (2) −0.0124 (16) −0.0105 (16) 0.0036 (17)
C6 0.0431 (17) 0.0526 (19) 0.0360 (17) −0.0029 (14) −0.0102 (13) 0.0059 (13)
C7 0.059 (2) 0.060 (2) 0.082 (3) 0.0044 (17) 0.013 (2) −0.024 (2)
C8 0.0496 (18) 0.0484 (19) 0.055 (2) 0.0031 (14) −0.0012 (16) −0.0073 (15)
C9 0.0500 (18) 0.0488 (19) 0.0435 (18) 0.0055 (14) 0.0069 (15) −0.0042 (14)
C10 0.0403 (15) 0.0357 (15) 0.0356 (15) 0.0025 (12) 0.0003 (12) 0.0038 (12)
Cl1 0.0624 (6) 0.0570 (6) 0.0882 (7) 0.0174 (4) −0.0131 (5) −0.0005 (5)
Cl2 0.0583 (5) 0.0617 (5) 0.0438 (4) 0.0026 (4) 0.0076 (4) 0.0148 (4)
Cl3 0.0789 (6) 0.0675 (6) 0.0597 (6) −0.0330 (5) −0.0095 (5) 0.0051 (5)
Cl4 0.0683 (6) 0.0638 (6) 0.0397 (4) −0.0043 (4) 0.0026 (4) −0.0073 (4)
Fe1 0.0475 (3) 0.0410 (3) 0.0368 (3) −0.00288 (18) −0.00255 (19) 0.00161 (18)
N1 0.0337 (12) 0.0370 (13) 0.0294 (12) 0.0002 (10) 0.0008 (10) 0.0057 (9)

Geometric parameters (Å, º)

C1—C2 1.488 (4) C6—H6B 0.9700
C1—H1A 0.9600 C7—C8 1.498 (5)
C1—H1B 0.9600 C7—H7A 0.9600
C1—H1C 0.9600 C7—H7B 0.9600
C2—N1 1.498 (3) C7—H7C 0.9600
C2—H2A 0.9700 C8—C9 1.501 (4)
C2—H2B 0.9700 C8—H8A 0.9700
C3—C4 1.497 (4) C8—H8B 0.9700
C3—H3A 0.9600 C9—C10 1.492 (4)
C3—H3B 0.9600 C9—H9A 0.9700
C3—H3C 0.9600 C9—H9B 0.9700
C4—N1 1.504 (3) C10—N1 1.496 (3)
C4—H4A 0.9700 C10—H10A 0.9700
C4—H4B 0.9700 C10—H10B 0.9700
C5—C6 1.486 (4) Cl1—Cl1 0.0000 (18)
C5—H5A 0.9600 Cl1—Fe1 2.1804 (10)
C5—H5B 0.9600 Cl2—Fe1 2.1611 (9)
C5—H5C 0.9600 Cl3—Fe1 2.1695 (10)
C6—N1 1.504 (3) Cl4—Fe1 2.1823 (10)
C6—H6A 0.9700 Fe1—Cl1 2.1804 (10)
C2—C1—H1A 109.5 C8—C7—H7C 109.5
C2—C1—H1B 109.5 H7A—C7—H7C 109.5
H1A—C1—H1B 109.5 H7B—C7—H7C 109.5
C2—C1—H1C 109.5 C7—C8—C9 112.6 (3)
H1A—C1—H1C 109.5 C7—C8—H8A 109.1
H1B—C1—H1C 109.5 C9—C8—H8A 109.1
C1—C2—N1 116.3 (2) C7—C8—H8B 109.1
C1—C2—H2A 108.2 C9—C8—H8B 109.1
N1—C2—H2A 108.2 H8A—C8—H8B 107.8
C1—C2—H2B 108.2 C10—C9—C8 110.4 (3)
N1—C2—H2B 108.2 C10—C9—H9A 109.6
H2A—C2—H2B 107.4 C8—C9—H9A 109.6
C4—C3—H3A 109.5 C10—C9—H9B 109.6
C4—C3—H3B 109.5 C8—C9—H9B 109.6
H3A—C3—H3B 109.5 H9A—C9—H9B 108.1
C4—C3—H3C 109.5 C9—C10—N1 116.6 (2)
H3A—C3—H3C 109.5 C9—C10—H10A 108.1
H3B—C3—H3C 109.5 N1—C10—H10A 108.1
C3—C4—N1 115.4 (3) C9—C10—H10B 108.1
C3—C4—H4A 108.4 N1—C10—H10B 108.1
N1—C4—H4A 108.4 H10A—C10—H10B 107.3
C3—C4—H4B 108.4 Cl1—Cl1—Fe1 0 (10)
N1—C4—H4B 108.4 Cl2—Fe1—Cl3 109.72 (4)
H4A—C4—H4B 107.5 Cl2—Fe1—Cl1 109.41 (5)
C6—C5—H5A 109.5 Cl3—Fe1—Cl1 109.55 (5)
C6—C5—H5B 109.5 Cl2—Fe1—Cl1 109.41 (5)
H5A—C5—H5B 109.5 Cl3—Fe1—Cl1 109.55 (5)
C6—C5—H5C 109.5 Cl1—Fe1—Cl1 0.00 (7)
H5A—C5—H5C 109.5 Cl2—Fe1—Cl4 108.71 (4)
H5B—C5—H5C 109.5 Cl3—Fe1—Cl4 110.18 (5)
C5—C6—N1 115.2 (2) Cl1—Fe1—Cl4 109.26 (5)
C5—C6—H6A 108.5 Cl1—Fe1—Cl4 109.26 (5)
N1—C6—H6A 108.5 C10—N1—C2 111.0 (2)
C5—C6—H6B 108.5 C10—N1—C6 111.5 (2)
N1—C6—H6B 108.5 C2—N1—C6 106.5 (2)
H6A—C6—H6B 107.5 C10—N1—C4 106.3 (2)
C8—C7—H7A 109.5 C2—N1—C4 110.8 (2)
C8—C7—H7B 109.5 C6—N1—C4 110.8 (2)
H7A—C7—H7B 109.5

Hydrogen-bond geometry (Å, º)

D—H··· A D—H H··· A D··· A D—H··· A
C3—H3 B···Cl3 i 0.96 2.87 3.790 (4) 162
C4—H4 A···Cl1 0.97 2.92 3.859 (3) 163

Symmetry code: (i) x+1, y, z.

References

1  

Hay, M. T. & Geib, S. J. (2005). Acta Cryst. E 61, m190–m191.

2  

Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.

3  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

4  

Zhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025–1027.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
C3—H3 B⋯Cl3 i 0.96 2.87 3.790 (4) 162
C4—H4 A⋯Cl1 0.97 2.92 3.859 (3) 163

Symmetry code: (i) e-68-0m656-efi2.jpg .