cis-Tetra­chloridobis(1 H-imidazole-κ N 3)platinum(IV)

Bokach, Nadezhda A. a Kukushkin, Vadim Yu. a Izotova, Yulia A. a Usenko, Natalia I. b * Haukka, Matti c [a ] Department of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation [b ] Department of Chemistry, Taras Shevchenko National University, 01601 Kiev, Ukraine [c ] Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland

Abstract

In the title complex, cis-[PtCl 4(C 3H 4N 2) 2], the Pt IV ion lies on a twofold rotation axis and is coordinated in a slightly distorted octa­hedral geometry. The dihedral angle between the imidazole rings is 69.9 (2)°. In the crystal, mol­ecules are linked by N—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature  

For applications of platinum species bearing N-bonded heterocycles, see: Ravera et al. (2011 ); Esmaeilbeig et al. (2011 ); Al-Shuneigat et al. (2010 ); Wheate et al. (2007 ); van Zutphen et al. (2006 ); Fritsky et al. (2000 ); Krämer & Fritsky (2000 ). For the synthesis of platinum complexes with N-heterocyclic ligands, see: Bokach, Kuznetsov et al. (2011 ); Kritchenkov et al. (2011 ); Bokach, Balova et al. (2011 ); Tskhovrebov et al. (2009 ); Luzyanin et al. (2009 ); Bokach et al. (2009 ). For related structures, see: Khripun et al. (2006 , 2007 ); Korte et al. (1981 ); Kuduk-Jaworska et al. (1988 ); Bayon et al. (1987 ); Yip et al. (1993 ); Chen et al. (2006 ); Gao et al. (2004 ); Garcia et al. (2000 ); Hao & Yu (2007 ); Huo et al. (2004 ). For bond-length data, see: Orpen et al. (1989 ). e-68-0m547-scheme1.jpg

Experimental  

Crystal data  

  • [PtCl 4(C 3H 4N 2) 2]

  • M r = 473.05

  • Monoclinic, e-68-0m547-efi1.jpg

  • a = 7.7264 (4) Å

  • b = 11.8757 (6) Å

  • c = 12.9471 (5) Å

  • β = 93.332 (3)°

  • V = 1185.97 (10) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.70 mm −1

  • T = 120 K

  • 0.15 × 0.13 × 0.07 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan ( DENZO/ SCALEPACK; Otwinowski & Minor, 1997 ) T min = 0.193, T max = 0.411

  • 7759 measured reflections

  • 1362 independent reflections

  • 1275 reflections with I > 2σ( I)

  • R int = 0.037

Refinement  

  • R[ F 2 > 2σ( F 2)] = 0.019

  • wR( F 2) = 0.037

  • S = 1.05

  • 1362 reflections

  • 70 parameters

  • H-atom parameters constrained

  • Δρ max = 0.68 e Å −3

  • Δρ min = −0.73 e Å −3

Data collection: COLLECT (Nonius, 2000 ); cell refinement: DENZO/ SCALEPACK (Otwinowski & Minor, 1997 ); data reduction: DENZO/ SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: DIAMOND (Brandenburg, 2008 ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013323/lh5433sup1.cif

e-68-0m547-sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013323/lh5433Isup2.hkl

e-68-0m547-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5433).

Acknowledgements

This work was supported by the Russian Fund for Basic Research (grant 11–03–90417) and the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041). Financial support from the Visby Program through the Swedish Institute is gratefully acknowledged. Anatoly V. Khripun is thanked for experimental assistance.

Appendices

supplementary crystallographic information

Comment

Platinum species, bearing N-bonded heterocycles (including, in particular, imidazoles) have drawn attention as efficient antitumor agents (Ravera et al., 2011; Esmaeilbeig et al., 2011; Al-Shuneigat et al., 2010; Wheate et al., 2007; van Zutphen et al., 2006). Within the framework of our projects the focus is on the synthesis of platinum complexes with N-heterocyclic ligands (Bokach, Kuznetsov et al., 2011; Kritchenkov et al., 2011; Bokach, Balova et al. , 2011; Tskhovrebov et al., 2009; Luzyanin et al., 2009; Bokach et al. , 2009; Krämer et al., 2000; Fritsky et al. , 2000), the title compound (I) was synthesized and characterized by single-crystal X-ray diffraction.

In (I) the Pt IV ion is in a slightly distorted octahedral coordination geometry formed by two N and four Cl atoms. Two imidazole ligands are in a cis orientation. The Pt—Cl bond distances are similar, within 3σ, to other Pt—Cl bond lengths [2.323 (38) Å] in platinum(IV) complexes (Orpen et al., 1989). The Pt—N distances are usual for platinum complexes bearing two cis-coordinated N-bonded heterocycles, e.g. 2.044 (3)–2.055 (5) Å in platinum(IV) complexes (Khripun et al., 2007; Khripun et al., 2006).

The title compound (1) represents the first example of the structurally characterized platinum complex having the neutral unsubstituted imidazole ligand and the second example of an imidazole Pt(IV) complex (Kuduk-Jaworska et al., 1988). The dihedral angle between the imidazole rings is 69.9 (2)°. The bond distances and angles in the heterocyclic ligands are in good agreement with those previously observed for imidazole ligands at platinum (Korte et al., 1981; Kuduk-Jaworska et al., 1988; Bayon et al., 1987; Yip et al., 1993) and other transition metal centers (for recent examples see Huo et al., 2004; Chen et al. , 2006; Garcia et al., 2000; Hao et al., 2007; Gao et al., 2004). In the crystal, molecules are linked bt N—H···.Cl hydrogen bonds to form a three-dimensional network (Table 2).

Experimental

Complex (1) was synthesized by the reaction of cis-[PtCl 4(EtCN) 2] with 2 equivs of imidazole in CH 2Cl 2 solution at room temperature. The crystals suitable for X-ray crystallography were obtained from an acetone/toluene solution by a slow evaporation of the solvent at room temperature.

Refinement

The NH hydrogen was initially located in difference Fourier maps but was included in a calculated position as riding with U iso = 1.5 U eq(N). Other H atoms were positioned geometrically and also allowed to ride on their parent atoms, with C—H = 0.95 Å, and U iso = 1.2 U eq(C). The highest peak is located 0.85 Å from atom Pt1 and the deepest hole is located 0.89 Å from atom Pt1.

Figures

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. Unlabled atoms are related by the symmetry operator (-x, y, -z+1/2).

The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. Unlabled atoms are related by the symmetry operator (-x, y, -z+1/2).

Crystal data

[PtCl 4(C 3H 4N 2) 2] F(000) = 872
M r = 473.05 D x = 2.649 Mg m 3
Monoclinic, C2/ c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4469 reflections
a = 7.7264 (4) Å θ = 1.0–27.5°
b = 11.8757 (6) Å µ = 12.70 mm 1
c = 12.9471 (5) Å T = 120 K
β = 93.332 (3)° Plate, yellow
V = 1185.97 (10) Å 3 0.15 × 0.13 × 0.07 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1362 independent reflections
Radiation source: fine-focus sealed tube 1275 reflections with I > 2σ( I)
Horizontally mounted graphite crystal monochromator R int = 0.037
Detector resolution: 9 pixels mm -1 θ max = 27.5°, θ min = 3.2°
φ scans and ω scans with κ offset h = −9→10
Absorption correction: multi-scan ( DENZO/ SCALEPACK; Otwinowski & Minor, 1997) k = −15→15
T min = 0.193, T max = 0.411 l = −16→14
7759 measured reflections

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.019 Hydrogen site location: mixed
wR( F 2) = 0.037 H-atom parameters constrained
S = 1.05 w = 1/[σ 2( F o 2) + (0.0108 P) 2 + 3.3813 P] where P = ( F o 2 + 2 F c 2)/3
1362 reflections (Δ/σ) max < 0.001
70 parameters Δρ max = 0.68 e Å 3
0 restraints Δρ min = −0.73 e Å 3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Pt1 0.0000 0.132240 (14) 0.2500 0.01672 (7)
Cl1 0.07166 (12) −0.00761 (7) 0.37001 (7) 0.02527 (19)
Cl2 −0.28465 (11) 0.13451 (7) 0.29654 (7) 0.02696 (19)
N1 0.0594 (4) 0.2545 (2) 0.3576 (2) 0.0184 (6)
N2 0.1812 (4) 0.3987 (3) 0.4316 (2) 0.0292 (7)
H2N 0.2549 0.4662 0.4359 0.044*
C1 0.1675 (5) 0.3389 (3) 0.3449 (3) 0.0265 (8)
H1 0.2259 0.3543 0.2838 0.032*
C2 0.0790 (5) 0.3503 (3) 0.5026 (3) 0.0274 (8)
H2 0.0644 0.3754 0.5712 0.033*
C3 0.0036 (5) 0.2603 (3) 0.4555 (3) 0.0266 (8)
H3 −0.0747 0.2097 0.4852 0.032*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Pt1 0.01632 (10) 0.01756 (10) 0.01655 (10) 0.000 0.00311 (7) 0.000
Cl1 0.0301 (5) 0.0228 (4) 0.0226 (4) −0.0022 (3) −0.0010 (4) 0.0041 (3)
Cl2 0.0199 (4) 0.0313 (5) 0.0303 (5) −0.0019 (3) 0.0074 (3) 0.0022 (4)
N1 0.0200 (15) 0.0182 (14) 0.0168 (14) −0.0014 (11) 0.0002 (11) −0.0001 (11)
N2 0.0340 (18) 0.0251 (15) 0.0287 (17) −0.0063 (13) 0.0030 (14) −0.0034 (13)
C1 0.028 (2) 0.0261 (18) 0.025 (2) −0.0052 (15) 0.0041 (16) −0.0030 (14)
C2 0.030 (2) 0.0280 (19) 0.0248 (19) 0.0004 (15) 0.0060 (16) −0.0032 (15)
C3 0.028 (2) 0.0293 (19) 0.0236 (19) 0.0000 (15) 0.0072 (15) −0.0002 (15)

Geometric parameters (Å, º)

Pt1—N1 i 2.046 (3) N2—C1 1.327 (5)
Pt1—N1 2.046 (3) N2—C2 1.372 (5)
Pt1—Cl2 i 2.3141 (8) N2—H2N 0.9830
Pt1—Cl2 2.3141 (8) C1—H1 0.9500
Pt1—Cl1 2.3193 (8) C2—C3 1.347 (5)
Pt1—Cl1 i 2.3193 (8) C2—H2 0.9500
N1—C1 1.321 (4) C3—H3 0.9500
N1—C3 1.364 (4)
N1 i—Pt1—N1 89.55 (15) C1—N1—C3 108.3 (3)
N1 i—Pt1—Cl2 i 89.63 (8) C1—N1—Pt1 124.9 (2)
N1—Pt1—Cl2 i 89.43 (8) C3—N1—Pt1 126.7 (2)
N1 i—Pt1—Cl2 89.43 (8) C1—N2—C2 108.8 (3)
N1—Pt1—Cl2 89.63 (8) C1—N2—H2N 120.1
Cl2 i—Pt1—Cl2 178.67 (4) C2—N2—H2N 131.1
N1 i—Pt1—Cl1 178.88 (8) N1—C1—N2 108.7 (3)
N1—Pt1—Cl1 90.97 (8) N1—C1—H1 125.7
Cl2 i—Pt1—Cl1 89.38 (3) N2—C1—H1 125.7
Cl2—Pt1—Cl1 91.57 (3) C3—C2—N2 106.3 (3)
N1 i—Pt1—Cl1 i 90.97 (8) C3—C2—H2 126.9
N1—Pt1—Cl1 i 178.88 (8) N2—C2—H2 126.9
Cl2 i—Pt1—Cl1 i 91.57 (3) C2—C3—N1 108.0 (3)
Cl2—Pt1—Cl1 i 89.38 (3) C2—C3—H3 126.0
Cl1—Pt1—Cl1 i 88.54 (4) N1—C3—H3 126.0

Symmetry code: (i) − x, y, − z+1/2.

Hydrogen-bond geometry (Å, º)

D—H··· A D—H H··· A D··· A D—H··· A
N2—H2 N···Cl1 ii 0.98 2.66 3.355 (3) 128
N2—H2 N···Cl2 ii 0.98 2.70 3.320 (3) 122
N2—H2 N···Cl1 iii 0.98 2.82 3.368 (3) 116

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) − x+1/2, − y+1/2, − z+1.

References

1  

Al-Shuneigat, J., Yu, J. Q., Beale, P., Fisher, K. & Huq, F. (2010). Med. Chem. 6, 321–328.

2  

Bayon, J. C., Kolowich, J. B. & Rasmussen, P. G. (1987). Polyhedron, 6, 341–343.

3  

Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Yu. (2011). Organometallics, 30, 595–602.

4  

Bokach, N. A., Kuznetsov, M. L., Haukka, M., Ovcharenko, V. I., Tretyakov, E. V. & Kukushkin, V. Yu. (2009). Organometallics, 28, 1406–1413.

5  

Bokach, N. A., Kuznetsov, M. L. & Kukushkin, V. Yu. (2011). Coord. Chem. Rev. 255, 2946–2967.

6  

Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.

7  

Chen, Y., Zhang, H., Wang, X., Huang, Ch., Cao, Y. & Sun, R. (2006). J. Solid State Chem. 179, 1674–1680.

8  

Esmaeilbeig, A., Samouei, H., Abedanzadeh, S. & Amirghofran, Z. (2011). J. Organomet. Chem. 696, 3135–3142.

9  

Fritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255–3258.

10  

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E 60, m1329–m1330.

11  

Garcia, R., Paulo, A., Domingos, A., Santos, I., Ortner, K. & Alberto, R. (2000). J. Am. Chem. Soc. 122, 11240–11241.

12  

Hao, L.-J. & Yu, T.-L. (2007). Acta Cryst. E 63, m2555.

13  

Huo, L.-H., Gao, S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E 60, m1747–m1749.

14  

Khripun, A. V., Haukka, M. & Kukushkin, V. Yu. (2006). Russ. Chem. Bull. pp. 247–255.

15  

Khripun, A. V., Kukushkin, V. Yu., Koldobskii, G. I. & Haukka, M. (2007). Inorg. Chem. Commun. 10, 250–254.

16  

Korte, H.-J., Krebs, B., van Kralingen, C. G., Marcelis, A. T. M. & Reedijk, J. (1981). Inorg. Chim. Acta, 52, 61–67.

17  

Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.

18  

Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2011). Dalton Trans. 40, 4175–4182.

19  

Kuduk-Jaworska, J., Kubiak, M. & Głowiak, T. (1988). Acta Cryst. C 44, 437–439.

20  

Luzyanin, K. V., Tshovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. & Kukushkin, V. Yu. (2009). Chem. Eur. J. 15, 5969–5978.

21  

Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.

22  

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.

23  

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.

24  

Ravera, M., Gabano, E., Sardi, M., Ermondi, G., Caron, G., McGlinchey, M. J., Müller-Bunz, H., Monti, E., Gariboldi, M. B. & Osella, D. (2011). J. Inorg. Biochem. 105, 400–409.

25  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

26  

Tskhovrebov, A. G., Bokach, N. A., Haukka, M. & Kukushkin, V. Yu. (2009). Inorg. Chem. 48, 8678–8688.

27  

Wheate, N. J., Taleb, R. I., Krause-Heuer, A. M., Cook, R. L., Wang, S., Higgins, V. J. & Aldrich-Wright, J. R. (2007). Dalton Trans. pp. 5055–5064.

28  

Yip, H.-K., Che, Ch.-M. & Peng, Sh.-M. (1993). J. Chem. Soc. Dalton Trans. pp. 179–187.

29  

Zutphen, S. van, Pantoja, E., Soriano, R., Soro, C., Tooke, D. M., Spek, A. L. den Dulk, H., Brouwer, J. & Reedijk, J. (2006). Dalton Trans. pp. 1020–1023.

Figures and Tables

Table 1

Selected bond lengths (Å)

Pt1—N1 2.046 (3)
Pt1—Cl2 2.3141 (8)
Pt1—Cl1 2.3193 (8)
Table 2

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
N2—H2 N⋯Cl1 ii 0.98 2.66 3.355 (3) 128
N2—H2 N⋯Cl2 ii 0.98 2.70 3.320 (3) 122
N2—H2 N⋯Cl1 iii 0.98 2.82 3.368 (3) 116

Symmetry codes: (ii) e-68-0m547-efi2.jpg ; (iii) e-68-0m547-efi3.jpg .