Chlorido[4-chloro-2-(pyridin-2-yl­methyl­imino­meth­yl)phenolato-κ 3 N, N′, O]copper(II)

Wang, Haixia a * Lang, Yuehe a Wang, Shaohong a [a ] Department of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People’s Republic of China

Abstract

In the title complex, [Cu(C 13H 10ClN 2O)Cl], the Cu II ion is coordinated by one O atom and two N atoms of the tridentate Schiff base ligand and one chloride ion, forming a slightly distorted square-planar geometry. Weak Cu⋯Cl inter­actions [2.793 (5) Å] result in the formation of a chain along the a axis.

Related literature  

For background to the use of unsymmetrical tridentate Schiff base ligands and their hydrogenated derivatives in coordin­ation chemistry for the assembly of alkoxo-or phenoxo-bridged clusters and polymers, see: Koizumi et al. (2005 ); Boskovic et al. (2003 ); Oshiob et al. (2005 ). For related structures, see: Bluhm et al. (2003 ); Kannappan et al. (2005 ); Sun et al. (2005 ). e-68-0m540-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C 13H 10ClN 2O)Cl]

  • M r = 344.67

  • Orthorhombic, e-68-0m540-efi1.jpg

  • a = 7.7975 (11) Å

  • b = 13.638 (2) Å

  • c = 24.854 (4) Å

  • V = 2643.1 (7) Å 3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.05 mm −1

  • T = 293 K

  • 0.15 × 0.12 × 0.09 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan ( SADABS; Sheldrick, 2008 a ) T min = 0.749, T max = 0.837

  • 12098 measured reflections

  • 2325 independent reflections

  • 1580 reflections with I > 2σ( I)

  • R int = 0.053

Refinement  

  • R[ F 2 > 2σ( F 2)] = 0.038

  • wR( F 2) = 0.098

  • S = 1.02

  • 2325 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρ max = 0.29 e Å −3

  • Δρ min = −0.33 e Å −3

Data collection: APEX2 (Bruker, 2004 ); cell refinement: SAINT-Plus (Bruker, 2001 ); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 b ); molecular graphics: SHELXTL (Sheldrick, 2008 b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013359/hg5195sup1.cif

e-68-0m540-sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013359/hg5195Isup2.hkl

e-68-0m540-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5195).

Acknowledgements

This work was supported by the Basic and Frontier Research Programs of Henan Province (No. 092300410194)

Appendices

supplementary crystallographic information

Comment

Schiff base complexes have all along attracted much attention due to their interesting structures and wide potential applications. Recently, the relative flexible unsymmetrical tridentate Schiff base ligands and their hydrogenerated derivatives have been introduced into the coordination chemistry to assemble alkoxo-or phenoxo-bridged clusters and polymers with beautiful molecular structures and interesting magnetic properties (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). Herein, we report the structure of a new copper complex based on an unsymmetric tridentate Schiff base ligand.

The molecular structure of title compound is shown in Fig. 1. The Cu ion is four coordinate forming a slightly distorted square planar coordination sphere, in which three positions are occupied by two N atoms and one O atom from the asymmetric tridentate Schiff base ligand, and the other one coming from a coordinated chloride ion. The CuN 2O unit is located in a well plane with the mean deviation of 0.0035 (3) Å, while the chloro ion is obvious out of the above plane with deviation value 0.1249 (5) Å. The bond distances of Cu—O, Cu—N and Cu—Cl are in the normal range compared to the reported complexes containing the analogous unsymmetrical tridentate Schiff base ligands (Bluhm et al., 2003; Kannappan, et al., 2005; Sun et al. , 2005). It is worth noting that the asymmetric unit can be linked into one dimensional double chain structure by the weak Cu···Cl intermolecular interactions.

Experimental

The Schiff base was obtained by condensation 2-(aminomethyl)pyridine and 5-chloro-2-hydroxy-benzaldehyde with the ratio 1:1 in methanol. The synthesis of the title complex was carried out by the reaction of CuCl 2.6H 2O and the Schiff-base ligand (1:1, molar ratio) in methanol under the stirring condition at room temperature. The filtrated solution was allowed to partial evaporation and blue single crystals suitable for X-ray diffraction were afforded with the yield about 60% sevral days later.

Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with U iso(H) = 1.2 U eq(C).

Figures

Fig. 1.

View of the title compound with the atom-labelling scheme Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity.

View of the title compound with the atom-labelling scheme Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity.

Crystal data

[Cu(C 13H 10ClN 2O)Cl] F(000) = 1384
M r = 344.67 D x = 1.732 Mg m 3
Orthorhombic, P b c a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1346 reflections
a = 7.7975 (11) Å θ = 2.8–26.3°
b = 13.638 (2) Å µ = 2.05 mm 1
c = 24.854 (4) Å T = 293 K
V = 2643.1 (7) Å 3 Block, blue
Z = 8 0.15 × 0.12 × 0.09 mm

Data collection

Bruker APEXII diffractometer 2325 independent reflections
Radiation source: fine-focus sealed tube 1580 reflections with I > 2σ( I)
Graphite monochromator R int = 0.053
φ and ω scans θ max = 25.0°, θ min = 1.6°
Absorption correction: multi-scan ( SADABS; Sheldrick, 2008 a) h = −9→9
T min = 0.749, T max = 0.837 k = −14→16
12098 measured reflections l = −27→29

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR( F 2) = 0.098 H-atom parameters constrained
S = 1.02 w = 1/[σ 2( F o 2) + (0.0418 P) 2 + 1.4463 P] where P = ( F o 2 + 2 F c 2)/3
2325 reflections (Δ/σ) max = 0.006
172 parameters Δρ max = 0.29 e Å 3
0 restraints Δρ min = −0.33 e Å 3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Cu1 0.10863 (6) 0.97468 (3) 0.248134 (18) 0.03844 (17)
Cl1 0.43484 (19) 0.64978 (10) 0.45552 (5) 0.0755 (4)
Cl2 −0.09768 (12) 1.09117 (7) 0.25915 (4) 0.0441 (3)
O1 0.1221 (4) 0.9585 (2) 0.32421 (11) 0.0504 (8)
N1 0.2305 (4) 0.8517 (2) 0.23433 (11) 0.0349 (7)
N2 0.1071 (4) 0.9820 (2) 0.16720 (13) 0.0407 (8)
C1 0.2746 (5) 0.8043 (3) 0.32695 (15) 0.0358 (9)
C2 0.1939 (5) 0.8871 (3) 0.35062 (16) 0.0399 (10)
C3 0.1894 (6) 0.8900 (3) 0.40777 (17) 0.0524 (12)
H3 0.1355 0.9426 0.4246 0.063*
C4 0.2610 (6) 0.8186 (3) 0.43873 (17) 0.0564 (12)
H4 0.2573 0.8231 0.4760 0.068*
C5 0.3394 (5) 0.7391 (3) 0.41436 (17) 0.0472 (11)
C6 0.3446 (5) 0.7312 (3) 0.36013 (16) 0.0414 (10)
H6 0.3953 0.6764 0.3446 0.050*
C7 0.2900 (5) 0.7931 (3) 0.27008 (15) 0.0343 (9)
H7 0.3488 0.7381 0.2578 0.041*
C8 0.1920 (5) 0.9084 (3) 0.14267 (15) 0.0392 (10)
C9 0.2162 (6) 0.9091 (3) 0.08752 (17) 0.0544 (12)
H9 0.2736 0.8576 0.0709 0.065*
C10 0.1555 (6) 0.9855 (4) 0.05748 (19) 0.0655 (14)
H10 0.1727 0.9868 0.0205 0.079*
C11 0.0687 (6) 1.0606 (4) 0.08264 (19) 0.0646 (13)
H11 0.0268 1.1134 0.0630 0.077*
C12 0.0453 (6) 1.0559 (3) 0.13728 (17) 0.0535 (12)
H12 −0.0157 1.1057 0.1542 0.064*
C13 0.2559 (5) 0.8271 (3) 0.17772 (14) 0.0407 (10)
H13A 0.1948 0.7671 0.1693 0.049*
H13B 0.3770 0.8163 0.1709 0.049*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Cu1 0.0423 (3) 0.0278 (3) 0.0452 (3) 0.0030 (2) 0.0022 (3) −0.0004 (2)
Cl1 0.1064 (11) 0.0612 (8) 0.0589 (7) 0.0109 (8) −0.0199 (7) 0.0129 (6)
Cl2 0.0358 (5) 0.0300 (5) 0.0665 (7) 0.0016 (4) 0.0006 (5) −0.0014 (5)
O1 0.065 (2) 0.0367 (17) 0.0496 (17) 0.0140 (15) 0.0072 (15) 0.0007 (14)
N1 0.0397 (19) 0.0258 (17) 0.0392 (18) −0.0030 (15) 0.0042 (15) −0.0022 (14)
N2 0.040 (2) 0.0336 (19) 0.0484 (19) −0.0033 (17) −0.0025 (16) 0.0041 (16)
C1 0.034 (2) 0.028 (2) 0.045 (2) −0.0045 (17) 0.0006 (18) −0.0028 (18)
C2 0.041 (2) 0.032 (2) 0.047 (2) −0.0053 (19) 0.004 (2) −0.0024 (19)
C3 0.065 (3) 0.044 (3) 0.048 (3) 0.007 (2) 0.006 (2) −0.007 (2)
C4 0.070 (3) 0.058 (3) 0.042 (2) −0.005 (3) 0.002 (2) −0.003 (2)
C5 0.052 (3) 0.041 (3) 0.048 (3) −0.003 (2) −0.004 (2) 0.003 (2)
C6 0.044 (3) 0.030 (2) 0.050 (3) −0.0025 (18) −0.0013 (19) −0.003 (2)
C7 0.031 (2) 0.024 (2) 0.048 (2) −0.0001 (17) 0.0022 (18) −0.0048 (18)
C8 0.038 (2) 0.035 (2) 0.044 (2) −0.0071 (19) −0.0029 (19) 0.000 (2)
C9 0.063 (3) 0.051 (3) 0.049 (3) 0.000 (2) 0.000 (2) −0.002 (2)
C10 0.078 (4) 0.074 (4) 0.045 (3) −0.004 (3) −0.005 (2) 0.009 (3)
C11 0.074 (4) 0.060 (3) 0.059 (3) 0.002 (3) −0.008 (3) 0.016 (3)
C12 0.057 (3) 0.045 (3) 0.058 (3) 0.001 (2) −0.001 (2) 0.004 (2)
C13 0.044 (3) 0.036 (2) 0.042 (2) 0.0012 (19) 0.001 (2) −0.0045 (18)

Geometric parameters (Å, º)

Cu1—O1 1.907 (3) C4—C5 1.384 (6)
Cu1—N1 1.958 (3) C4—H4 0.9300
Cu1—N2 2.014 (3) C5—C6 1.353 (5)
Cu1—Cl2 2.2775 (11) C6—H6 0.9300
Cl1—C5 1.756 (4) C7—H7 0.9300
O1—C2 1.300 (4) C8—C9 1.383 (5)
N1—C7 1.282 (4) C8—C13 1.495 (5)
N1—C13 1.460 (4) C9—C10 1.367 (6)
N2—C12 1.342 (5) C9—H9 0.9300
N2—C8 1.348 (5) C10—C11 1.377 (6)
C1—C6 1.404 (5) C10—H10 0.9300
C1—C2 1.421 (5) C11—C12 1.372 (6)
C1—C7 1.427 (5) C11—H11 0.9300
C2—C3 1.422 (5) C12—H12 0.9300
C3—C4 1.362 (6) C13—H13A 0.9700
C3—H3 0.9300 C13—H13B 0.9700
O1—Cu1—N1 92.74 (12) C5—C6—C1 121.1 (4)
O1—Cu1—N2 175.25 (13) C5—C6—H6 119.4
N1—Cu1—N2 82.55 (13) C1—C6—H6 119.4
O1—Cu1—Cl2 90.03 (9) N1—C7—C1 126.1 (4)
N1—Cu1—Cl2 164.03 (10) N1—C7—H7 117.0
N2—Cu1—Cl2 94.67 (10) C1—C7—H7 117.0
C2—O1—Cu1 127.7 (3) N2—C8—C9 120.6 (4)
C7—N1—C13 118.4 (3) N2—C8—C13 116.9 (3)
C7—N1—Cu1 126.0 (3) C9—C8—C13 122.5 (4)
C13—N1—Cu1 115.6 (2) C10—C9—C8 120.0 (4)
C12—N2—C8 119.0 (4) C10—C9—H9 120.0
C12—N2—Cu1 126.4 (3) C8—C9—H9 120.0
C8—N2—Cu1 114.3 (3) C9—C10—C11 119.3 (5)
C6—C1—C2 119.6 (4) C9—C10—H10 120.4
C6—C1—C7 118.2 (4) C11—C10—H10 120.4
C2—C1—C7 122.2 (3) C12—C11—C10 118.7 (5)
O1—C2—C1 125.2 (4) C12—C11—H11 120.7
O1—C2—C3 118.2 (4) C10—C11—H11 120.7
C1—C2—C3 116.5 (4) N2—C12—C11 122.4 (4)
C4—C3—C2 122.3 (4) N2—C12—H12 118.8
C4—C3—H3 118.8 C11—C12—H12 118.8
C2—C3—H3 118.8 N1—C13—C8 110.2 (3)
C3—C4—C5 119.6 (4) N1—C13—H13A 109.6
C3—C4—H4 120.2 C8—C13—H13A 109.6
C5—C4—H4 120.2 N1—C13—H13B 109.6
C6—C5—C4 120.8 (4) C8—C13—H13B 109.6
C6—C5—Cl1 120.8 (3) H13A—C13—H13B 108.1
C4—C5—Cl1 118.4 (3)

References

1  

Bluhm, M. E., Ciesielski, M., Gorls, H., Walter, O. & Doring, M. (2003). Inorg. Chem. 42, 8878–8885.

2  

Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.

3  

Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.

4  

Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.

5  

Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.

6  

Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.

7  

Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.

8  

Sheldrick, G. M. (2008 a). SADABS University of Göttingen, Germany.

9  

Sheldrick, G. M. (2008 b). Acta Cryst. A 64, 112–122.

10  

Sun, Y.-X., Gao, Y.-Z., Zhang, H.-L., Kong, D.-S. & Yu, Y. (2005). Acta Cryst. E 61, m1055–m1057.