2,3,6,3′,4′-Penta- O-acetyl-4,1′,6′-tri­chloro-4,1′,6′-tride­oxy­sucrose

Wu, Fu-Zhong a * Zhang, Ping a [a ] East China University of Science and Technology, 200237 Shanghai, People’s Republic of China

Abstract

In the title compound, C 22H 29Cl 3O 13, the glucopyran ring exists in the chair conformation while the glucofuran ring adopts an envelope conformation. Intra­molecular C—H⋯O hydrogen bonds occur. In the crystal, adjacent mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to sucralose (4,1′,6′-trichloro-4,1′,6′-tride­oxy- galacto-sucrose), see: John et al. (2000 ); Khan (1972 ); Mclean (2000 ). For details of the synthesis, see: Kille et al. (2000 ); Wu et al. (2010 ). e-67-o2323-scheme1.jpg

Experimental

Crystal data

  • C 22H 29Cl 3O 13

  • M r = 607.80

  • Orthorhombic, e-67-o2323-efi1.jpg

  • a = 8.9813 (6) Å

  • b = 15.5062 (10) Å

  • c = 19.9737 (13) Å

  • V = 2781.7 (3) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm −1

  • T = 293 K

  • 0.37 × 0.31 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan ( SADABS; Bruker, 2002 ) T min = 0.777, T max = 1.000

  • 15159 measured reflections

  • 5463 independent reflections

  • 5081 reflections with I > 2σ( I)

  • R int = 0.021

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.037

  • wR( F 2) = 0.098

  • S = 1.06

  • 5463 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρ max = 0.32 e Å −3

  • Δρ min = −0.19 e Å −3

  • Absolute structure: Flack (1983 ), 2367 Friedel pairs

  • Flack parameter: 0.00 (5)

Data collection: SMART (Bruker, 2002 ); cell refinement: SAINT (Bruker, 2002 ); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032120/xu5274sup1.cif

e-67-o2323-sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032120/xu5274Isup2.hkl

e-67-o2323-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5274).

Acknowledgements

The authors thank the East China University of Science and Technology (No. 2006–02) and Shanghai Dongyue Biochemical Ltd. (No. 2010–10) for financial support of this work.

Appendices

supplementary crystallographic information

Comment

The well known sucralose (4,1',6'-Trichloro-4,1',6'–trideoxy- galacto-sucrose) is a low calorie sweetener made from suger and tastes similar to sugar. It is about 600 times sweeter than suger. Sucralose can be safely consumed and used wherein there is a need to avoid use of sugar. More particularly it is very useful for preparing food, beverages and nutritional product wherein the use of sugar needs to be avoided. The sucralose is used in foods sweetening beverage and nutritional products ingredient world wide. Sucralose is a high-sensitivity artificial sweetener (John et al., 2000; Khan, 1972; Mclean et al. , 2000), and many convertional methods of producing sucralose have already been reported (Kille et al., 2000). The title compound (4,1',6'-Trichloro-4,1',6'-trideoxy-2,3,6,3',4'-sucrose pentaacetate), as the key intermediate of sucralose, was obtained by ourselves (Wu et al., 2010). Herein, we report the synthesis, characterization and crystal structure of the title compound.

The compound crystallizes in the orthorhombic space group P2 12 12 1, with one molecule in the asymmetric unit. The molecule structure consists of a glucopyran ring and a glucofuran ring (Fig. 1). The glucopyran ring exists in the form of chair, while the glucofuran ring adopts envelope conformation. The two rings attach to one oxygen atom by equation bonds. Even though non-classical hydrogen bonds observed in the crystal structure, two kind of weak intermolecular C—H···O and C—H···Cl hydrogen bonds play an important role in the formation of a three-dimensional suparmolecular architecture (Fig. 2).

Experimental

2,3,6,3',4'-Penta- O-acetylsucrose (4.5 mmol) and thionyl chloride (5.0 mmol) in toluene (10 ml) were refluxed for 4 h. Then solvent was removed on a vacuum rotary evaporator. Crude product (2.84 g, 90% yield) was recrystallized from EtOH to give crystals suitable for single-crystal X-ray diffraction (yield 85%).

Refinement

All H atoms were placed in geometrically idealized positions with C—H = 0.98–0.96 Å and refined in riding mode with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for the others.

Figures

Fig. 1.

A view of the molecular structure showing ellipsoids at the 30% probability level. Hydrogen atoms have been omitted for clarity.

A view of the molecular structure showing ellipsoids at the 30% probability level. Hydrogen atoms have been omitted for clarity.
Fig. 2.

Packing diagram view along the a axis.

Packing diagram view along the a axis.

Crystal data

C 22H 29Cl 3O 13 F(000) = 1264
M r = 607.80 D x = 1.451 Mg m 3
Orthorhombic, P2 12 12 1 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6865 reflections
a = 8.9813 (6) Å θ = 2.4–25.6°
b = 15.5062 (10) Å µ = 0.39 mm 1
c = 19.9737 (13) Å T = 293 K
V = 2781.7 (3) Å 3 Prism, colourless
Z = 4 0.37 × 0.31 × 0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer 5463 independent reflections
Radiation source: fine-focus sealed tube 5081 reflections with I > 2σ( I)
graphite R int = 0.021
φ and ω scans θ max = 26.0°, θ min = 2.0°
Absorption correction: multi-scan ( SADABS; Bruker, 2002) h = −10→11
T min = 0.777, T max = 1.000 k = −19→12
15159 measured reflections l = −24→24

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.037 H-atom parameters constrained
wR( F 2) = 0.098 w = 1/[σ 2( F o 2) + (0.0561 P) 2 + 0.3705 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.06 (Δ/σ) max = 0.007
5463 reflections Δρ max = 0.32 e Å 3
348 parameters Δρ min = −0.19 e Å 3
0 restraints Absolute structure: Flack (1983), 2367 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (5)

Special details

Experimental. 1H NMR (400 MHz, DMSO-d6): σ 2.03 (3 H, s, COCH3), 2.05 (3 H, s, COCH3), 2.06 (6 H, s, COCH3), 2.07 (3 H, s, COCH3), 3.82–3.96 (4 H, m, 2ClCH2), 4.16 (2 H, d, J = 5.6 Hz, CH2OAc), 4.26–4.31 (1 H, m), 4.55 (1 H, t, J = 5.8 Hz), 4.85 (1 H, dd, J = 1.0, 3.4 Hz), 5.15 (1 H, dd, J = 3.6, 8.1 Hz), 5.34–5.40 (2 H, m), 5.64 (1 H, d, J = 7.2 Hz), 5.68 (1 H, d, J = 3.6 Hz).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Cl1 0.18975 (7) 0.24388 (4) −0.12651 (3) 0.05417 (15)
Cl2 0.09410 (10) 0.70991 (4) 0.09992 (4) 0.0764 (2)
Cl3 0.38581 (8) 0.40249 (5) 0.17639 (5) 0.0757 (2)
O1 0.16446 (17) 0.35433 (9) 0.00841 (7) 0.0428 (3)
O2 0.0328 (2) 0.21775 (11) 0.08279 (9) 0.0582 (5)
O3 0.1521 (3) 0.09365 (15) 0.09253 (11) 0.0966 (9)
O4 0.0716 (2) 0.39925 (11) −0.18950 (8) 0.0562 (4)
O5 −0.1314 (2) 0.32350 (16) −0.21651 (11) 0.0778 (6)
O6 0.14003 (19) 0.53711 (9) −0.10439 (8) 0.0482 (4)
O7 0.3616 (3) 0.54004 (15) −0.15533 (15) 0.0985 (8)
O8 0.02654 (16) 0.48044 (9) 0.01512 (7) 0.0415 (3)
O9 0.15910 (17) 0.51900 (10) 0.11205 (7) 0.0447 (3)
O10 −0.23093 (18) 0.51482 (10) 0.07552 (8) 0.0484 (4)
O11 −0.2683 (3) 0.65461 (13) 0.05707 (14) 0.0862 (7)
O12 −0.1484 (2) 0.47132 (10) 0.21759 (8) 0.0522 (4)
O13 −0.1041 (3) 0.33524 (11) 0.24732 (9) 0.0669 (5)
C1 0.0421 (2) 0.30399 (14) −0.01580 (11) 0.0421 (5)
H1 −0.0509 0.3286 0.0013 0.050*
C2 0.0366 (2) 0.30306 (14) −0.09186 (11) 0.0403 (4)
H2 −0.0562 0.2750 −0.1058 0.048*
C3 0.0374 (2) 0.39501 (13) −0.11934 (10) 0.0417 (5)
H3 −0.0595 0.4220 −0.1111 0.050*
C4 0.1589 (2) 0.44793 (13) −0.08635 (11) 0.0403 (5)
H4 0.2559 0.4280 −0.1026 0.048*
C5 0.1564 (2) 0.44207 (13) −0.01042 (11) 0.0398 (5)
H5 0.2433 0.4725 0.0075 0.048*
C6 0.0430 (3) 0.54111 (14) 0.06840 (10) 0.0410 (5)
C7 −0.0980 (2) 0.53377 (14) 0.11150 (10) 0.0424 (5)
H7 −0.1114 0.5867 0.1376 0.051*
C8 −0.0613 (3) 0.46004 (15) 0.15774 (11) 0.0445 (5)
H8 −0.0838 0.4046 0.1365 0.053*
C9 0.1065 (3) 0.47010 (14) 0.16894 (10) 0.0449 (5)
H9 0.1240 0.5030 0.2101 0.054*
C10 0.0605 (3) 0.21462 (15) 0.01212 (13) 0.0539 (6)
H10A −0.0091 0.1755 −0.0092 0.065*
H10B 0.1607 0.1939 0.0037 0.065*
C11 0.0786 (3) 0.14943 (14) 0.11772 (13) 0.0513 (6)
C12 0.0301 (3) 0.15198 (16) 0.18838 (13) 0.0567 (6)
H12A −0.0737 0.1375 0.1911 0.085*
H12B 0.0455 0.2089 0.2061 0.085*
H12C 0.0870 0.1112 0.2139 0.085*
C13 −0.0184 (4) 0.35766 (17) −0.23298 (13) 0.0618 (7)
C14 0.0489 (6) 0.3574 (3) −0.30054 (15) 0.1107 (16)
H14A 0.1269 0.3151 −0.3023 0.166*
H14B 0.0895 0.4133 −0.3101 0.166*
H14C −0.0259 0.3435 −0.3331 0.166*
C15 0.2519 (3) 0.57680 (15) −0.13722 (12) 0.0542 (6)
C16 0.2162 (4) 0.66902 (16) −0.14929 (15) 0.0766 (9)
H16A 0.3024 0.6978 −0.1668 0.115*
H16B 0.1870 0.6957 −0.1079 0.115*
H16C 0.1360 0.6732 −0.1809 0.115*
C17 0.0780 (3) 0.62800 (15) 0.03785 (12) 0.0502 (5)
H17A −0.0003 0.6435 0.0066 0.060*
H17B 0.1706 0.6242 0.0130 0.060*
C18 −0.3104 (3) 0.58228 (18) 0.05202 (13) 0.0558 (6)
C19 −0.4519 (3) 0.5537 (2) 0.02097 (17) 0.0764 (9)
H19A −0.5134 0.5267 0.0543 0.115*
H19B −0.4310 0.5131 −0.0141 0.115*
H19C −0.5031 0.6026 0.0026 0.115*
C20 −0.1637 (3) 0.40117 (15) 0.25818 (12) 0.0497 (5)
C21 −0.2646 (4) 0.42122 (19) 0.31566 (15) 0.0718 (8)
H21A −0.2709 0.3720 0.3446 0.108*
H21B −0.3620 0.4351 0.2991 0.108*
H21C −0.2257 0.4694 0.3402 0.108*
C22 0.1891 (3) 0.38625 (16) 0.17245 (13) 0.0522 (6)
H22A 0.1653 0.3519 0.1333 0.063*
H22B 0.1569 0.3545 0.2117 0.063*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Cl1 0.0536 (3) 0.0469 (3) 0.0621 (3) 0.0062 (3) 0.0132 (3) −0.0079 (3)
Cl2 0.0967 (6) 0.0442 (3) 0.0881 (5) −0.0107 (4) 0.0013 (4) −0.0182 (3)
Cl3 0.0544 (4) 0.0727 (5) 0.1000 (6) 0.0109 (3) −0.0020 (4) 0.0109 (4)
O1 0.0459 (8) 0.0387 (7) 0.0437 (8) 0.0032 (6) −0.0028 (6) 0.0014 (6)
O2 0.0691 (11) 0.0485 (9) 0.0569 (10) 0.0143 (9) 0.0188 (9) 0.0138 (8)
O3 0.156 (2) 0.0704 (13) 0.0633 (12) 0.0511 (16) −0.0096 (14) −0.0051 (10)
O4 0.0768 (12) 0.0511 (9) 0.0408 (8) −0.0128 (9) −0.0033 (8) −0.0013 (7)
O5 0.0640 (12) 0.0976 (16) 0.0719 (13) −0.0123 (12) −0.0156 (10) −0.0165 (11)
O6 0.0612 (9) 0.0342 (7) 0.0492 (8) 0.0014 (7) 0.0071 (7) 0.0001 (6)
O7 0.0832 (16) 0.0680 (14) 0.144 (2) −0.0071 (12) 0.0512 (16) 0.0181 (14)
O8 0.0402 (7) 0.0437 (8) 0.0405 (7) 0.0026 (7) −0.0018 (6) −0.0080 (6)
O9 0.0444 (8) 0.0460 (8) 0.0436 (8) −0.0028 (7) −0.0055 (6) −0.0007 (6)
O10 0.0451 (9) 0.0479 (9) 0.0524 (8) 0.0026 (7) −0.0029 (7) −0.0070 (7)
O11 0.0912 (16) 0.0523 (11) 0.1152 (18) 0.0098 (11) −0.0340 (14) −0.0051 (12)
O12 0.0643 (10) 0.0472 (9) 0.0452 (8) 0.0014 (8) 0.0120 (7) −0.0034 (7)
O13 0.0935 (14) 0.0459 (10) 0.0611 (11) 0.0005 (10) 0.0128 (10) −0.0030 (8)
C1 0.0393 (11) 0.0385 (11) 0.0485 (11) 0.0020 (9) 0.0056 (9) −0.0016 (9)
C2 0.0357 (10) 0.0373 (11) 0.0480 (11) −0.0008 (9) 0.0042 (9) −0.0054 (9)
C3 0.0472 (11) 0.0386 (11) 0.0392 (11) 0.0020 (9) −0.0001 (9) −0.0019 (9)
C4 0.0444 (12) 0.0336 (10) 0.0430 (11) 0.0009 (9) 0.0037 (9) −0.0019 (8)
C5 0.0358 (11) 0.0398 (10) 0.0439 (11) 0.0010 (8) −0.0004 (8) −0.0029 (8)
C6 0.0457 (11) 0.0369 (10) 0.0405 (10) 0.0012 (9) −0.0032 (9) −0.0063 (9)
C7 0.0458 (11) 0.0409 (11) 0.0406 (11) 0.0009 (9) −0.0020 (9) −0.0077 (9)
C8 0.0501 (12) 0.0417 (11) 0.0418 (11) 0.0013 (10) 0.0045 (9) −0.0069 (9)
C9 0.0556 (13) 0.0433 (11) 0.0357 (10) −0.0005 (10) −0.0020 (9) −0.0058 (9)
C10 0.0616 (15) 0.0431 (12) 0.0571 (14) 0.0010 (11) 0.0108 (12) 0.0034 (10)
C11 0.0585 (14) 0.0362 (11) 0.0591 (13) 0.0015 (10) −0.0091 (11) 0.0018 (10)
C12 0.0630 (15) 0.0497 (14) 0.0573 (14) 0.0026 (12) −0.0040 (12) 0.0086 (11)
C13 0.084 (2) 0.0514 (14) 0.0502 (13) −0.0030 (14) −0.0166 (13) −0.0065 (11)
C14 0.188 (5) 0.098 (3) 0.0462 (15) −0.057 (3) −0.001 (2) −0.0106 (16)
C15 0.0730 (17) 0.0422 (12) 0.0473 (13) −0.0118 (12) 0.0048 (12) −0.0021 (10)
C16 0.123 (3) 0.0427 (13) 0.0645 (17) −0.0157 (17) 0.0068 (18) 0.0037 (12)
C17 0.0589 (14) 0.0414 (12) 0.0503 (12) −0.0015 (11) 0.0000 (10) −0.0030 (10)
C18 0.0555 (13) 0.0609 (16) 0.0511 (13) 0.0152 (12) −0.0035 (11) −0.0094 (12)
C19 0.0586 (16) 0.093 (2) 0.0774 (19) 0.0142 (16) −0.0169 (15) −0.0131 (17)
C20 0.0597 (14) 0.0471 (13) 0.0422 (12) −0.0086 (11) 0.0023 (10) −0.0077 (10)
C21 0.088 (2) 0.0648 (17) 0.0623 (16) −0.0054 (16) 0.0263 (15) −0.0004 (14)
C22 0.0555 (13) 0.0489 (13) 0.0523 (13) 0.0033 (11) −0.0045 (11) −0.0011 (10)

Geometric parameters (Å, °)

Cl1—C2 1.793 (2) C6—C17 1.512 (3)
Cl2—C17 1.781 (2) C6—C7 1.536 (3)
Cl3—C22 1.786 (3) C7—C8 1.506 (3)
O1—C5 1.414 (3) C7—H7 0.9800
O1—C1 1.432 (3) C8—C9 1.532 (3)
O2—C11 1.333 (3) C8—H8 0.9800
O2—C10 1.434 (3) C9—C22 1.498 (3)
O3—C11 1.199 (3) C9—H9 0.9800
O4—C13 1.351 (3) C10—H10A 0.9700
O4—C3 1.436 (3) C10—H10B 0.9700
O5—C13 1.191 (4) C11—C12 1.478 (4)
O6—C15 1.348 (3) C12—H12A 0.9600
O6—C4 1.439 (2) C12—H12B 0.9600
O7—C15 1.195 (3) C12—H12C 0.9600
O8—C5 1.405 (3) C13—C14 1.479 (5)
O8—C6 1.428 (2) C14—H14A 0.9600
O9—C6 1.402 (3) C14—H14B 0.9600
O9—C9 1.445 (3) C14—H14C 0.9600
O10—C18 1.350 (3) C15—C16 1.485 (4)
O10—C7 1.424 (3) C16—H16A 0.9600
O11—C18 1.188 (3) C16—H16B 0.9600
O12—C20 1.364 (3) C16—H16C 0.9600
O12—C8 1.439 (3) C17—H17A 0.9700
O13—C20 1.174 (3) C17—H17B 0.9700
C1—C10 1.503 (3) C18—C19 1.483 (4)
C1—C2 1.520 (3) C19—H19A 0.9600
C1—H1 0.9800 C19—H19B 0.9600
C2—C3 1.528 (3) C19—H19C 0.9600
C2—H2 0.9800 C20—C21 1.495 (4)
C3—C4 1.516 (3) C21—H21A 0.9600
C3—H3 0.9800 C21—H21B 0.9600
C4—C5 1.519 (3) C21—H21C 0.9600
C4—H4 0.9800 C22—H22A 0.9700
C5—H5 0.9800 C22—H22B 0.9700
C5—O1—C1 113.30 (16) O2—C10—H10A 110.0
C11—O2—C10 115.76 (19) C1—C10—H10A 110.0
C13—O4—C3 118.6 (2) O2—C10—H10B 110.0
C15—O6—C4 118.21 (19) C1—C10—H10B 110.0
C5—O8—C6 117.60 (16) H10A—C10—H10B 108.4
C6—O9—C9 111.99 (16) O3—C11—O2 121.6 (2)
C18—O10—C7 117.29 (19) O3—C11—C12 125.6 (2)
C20—O12—C8 116.86 (18) O2—C11—C12 112.8 (2)
O1—C1—C10 107.04 (18) C11—C12—H12A 109.5
O1—C1—C2 111.57 (17) C11—C12—H12B 109.5
C10—C1—C2 111.45 (18) H12A—C12—H12B 109.5
O1—C1—H1 108.9 C11—C12—H12C 109.5
C10—C1—H1 108.9 H12A—C12—H12C 109.5
C2—C1—H1 108.9 H12B—C12—H12C 109.5
C1—C2—C3 110.49 (17) O5—C13—O4 123.0 (3)
C1—C2—Cl1 111.46 (16) O5—C13—C14 126.8 (3)
C3—C2—Cl1 109.58 (15) O4—C13—C14 110.1 (3)
C1—C2—H2 108.4 C13—C14—H14A 109.5
C3—C2—H2 108.4 C13—C14—H14B 109.5
Cl1—C2—H2 108.4 H14A—C14—H14B 109.5
O4—C3—C4 104.23 (18) C13—C14—H14C 109.5
O4—C3—C2 113.23 (17) H14A—C14—H14C 109.5
C4—C3—C2 110.64 (18) H14B—C14—H14C 109.5
O4—C3—H3 109.5 O7—C15—O6 123.0 (2)
C4—C3—H3 109.5 O7—C15—C16 126.0 (3)
C2—C3—H3 109.5 O6—C15—C16 111.0 (3)
O6—C4—C3 109.05 (18) C15—C16—H16A 109.5
O6—C4—C5 107.80 (16) C15—C16—H16B 109.5
C3—C4—C5 113.00 (18) H16A—C16—H16B 109.5
O6—C4—H4 109.0 C15—C16—H16C 109.5
C3—C4—H4 109.0 H16A—C16—H16C 109.5
C5—C4—H4 109.0 H16B—C16—H16C 109.5
O8—C5—O1 110.70 (17) C6—C17—Cl2 111.80 (16)
O8—C5—C4 110.45 (17) C6—C17—H17A 109.3
O1—C5—C4 108.81 (17) Cl2—C17—H17A 109.3
O8—C5—H5 108.9 C6—C17—H17B 109.3
O1—C5—H5 108.9 Cl2—C17—H17B 109.3
C4—C5—H5 108.9 H17A—C17—H17B 107.9
O9—C6—O8 112.31 (17) O11—C18—O10 122.3 (3)
O9—C6—C17 108.34 (18) O11—C18—C19 126.2 (3)
O8—C6—C17 107.93 (18) O10—C18—C19 111.5 (2)
O9—C6—C7 104.27 (16) C18—C19—H19A 109.5
O8—C6—C7 106.46 (17) C18—C19—H19B 109.5
C17—C6—C7 117.62 (19) H19A—C19—H19B 109.5
O10—C7—C8 109.63 (18) C18—C19—H19C 109.5
O10—C7—C6 115.08 (17) H19A—C19—H19C 109.5
C8—C7—C6 102.71 (17) H19B—C19—H19C 109.5
O10—C7—H7 109.7 O13—C20—O12 122.6 (2)
C8—C7—H7 109.7 O13—C20—C21 126.8 (2)
C6—C7—H7 109.7 O12—C20—C21 110.6 (2)
O12—C8—C7 107.36 (17) C20—C21—H21A 109.5
O12—C8—C9 113.64 (18) C20—C21—H21B 109.5
C7—C8—C9 103.13 (18) H21A—C21—H21B 109.5
O12—C8—H8 110.8 C20—C21—H21C 109.5
C7—C8—H8 110.8 H21A—C21—H21C 109.5
C9—C8—H8 110.8 H21B—C21—H21C 109.5
O9—C9—C22 109.29 (18) C9—C22—Cl3 111.67 (17)
O9—C9—C8 105.08 (17) C9—C22—H22A 109.3
C22—C9—C8 113.9 (2) Cl3—C22—H22A 109.3
O9—C9—H9 109.5 C9—C22—H22B 109.3
C22—C9—H9 109.5 Cl3—C22—H22B 109.3
C8—C9—H9 109.5 H22A—C22—H22B 107.9
O2—C10—C1 108.36 (18)
C5—O1—C1—C10 −176.05 (17) O8—C6—C7—O10 −34.1 (2)
C5—O1—C1—C2 61.8 (2) C17—C6—C7—O10 87.0 (2)
O1—C1—C2—C3 −53.4 (2) O9—C6—C7—C8 −34.0 (2)
C10—C1—C2—C3 −172.96 (19) O8—C6—C7—C8 84.92 (19)
O1—C1—C2—Cl1 68.7 (2) C17—C6—C7—C8 −153.96 (19)
C10—C1—C2—Cl1 −50.9 (2) C20—O12—C8—C7 162.76 (19)
C13—O4—C3—C4 −179.9 (2) C20—O12—C8—C9 −83.9 (2)
C13—O4—C3—C2 59.8 (3) O10—C7—C8—O12 −82.9 (2)
C1—C2—C3—O4 164.59 (19) C6—C7—C8—O12 154.33 (17)
Cl1—C2—C3—O4 41.4 (2) O10—C7—C8—C9 156.84 (16)
C1—C2—C3—C4 48.0 (2) C6—C7—C8—C9 34.0 (2)
Cl1—C2—C3—C4 −75.18 (19) C6—O9—C9—C22 123.71 (19)
C15—O6—C4—C3 −120.1 (2) C6—O9—C9—C8 1.1 (2)
C15—O6—C4—C5 116.9 (2) O12—C8—C9—O9 −138.49 (17)
O4—C3—C4—O6 68.0 (2) C7—C8—C9—O9 −22.6 (2)
C2—C3—C4—O6 −169.99 (16) O12—C8—C9—C22 101.9 (2)
O4—C3—C4—C5 −172.15 (17) C7—C8—C9—C22 −142.19 (19)
C2—C3—C4—C5 −50.1 (2) C11—O2—C10—C1 −164.5 (2)
C6—O8—C5—O1 108.77 (19) O1—C1—C10—O2 70.0 (2)
C6—O8—C5—C4 −130.65 (18) C2—C1—C10—O2 −167.7 (2)
C1—O1—C5—O8 60.5 (2) C10—O2—C11—O3 7.7 (4)
C1—O1—C5—C4 −61.1 (2) C10—O2—C11—C12 −172.8 (2)
O6—C4—C5—O8 54.3 (2) C3—O4—C13—O5 6.3 (4)
C3—C4—C5—O8 −66.3 (2) C3—O4—C13—C14 −170.4 (3)
O6—C4—C5—O1 176.01 (16) C4—O6—C15—O7 4.5 (4)
C3—C4—C5—O1 55.4 (2) C4—O6—C15—C16 −177.7 (2)
C9—O9—C6—O8 −94.3 (2) O9—C6—C17—Cl2 −60.4 (2)
C9—O9—C6—C17 146.60 (17) O8—C6—C17—Cl2 177.80 (15)
C9—O9—C6—C7 20.6 (2) C7—C6—C17—Cl2 57.4 (2)
C5—O8—C6—O9 −35.1 (2) C7—O10—C18—O11 4.5 (4)
C5—O8—C6—C17 84.3 (2) C7—O10—C18—C19 −175.0 (2)
C5—O8—C6—C7 −148.60 (17) C8—O12—C20—O13 3.4 (4)
C18—O10—C7—C8 155.65 (19) C8—O12—C20—C21 −176.3 (2)
C18—O10—C7—C6 −89.2 (2) O9—C9—C22—Cl3 56.5 (2)
O9—C6—C7—O10 −153.05 (17) C8—C9—C22—Cl3 173.66 (16)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
C12—H12B···O13 0.96 2.51 3.304 (3) 139
C16—H16B···O11 i 0.96 2.57 3.300 (4) 133
C19—H19B···O3 ii 0.96 2.40 3.351 (4) 172
C21—H21C···O3 iii 0.96 2.44 3.396 (4) 174
C22—H22A···O1 0.97 2.49 3.321 (3) 143

Symmetry codes: (i) x+1/2, − y+3/2, − z; (ii) x−1/2, − y+1/2, − z; (iii) − x, y+1/2, − z+1/2.

References

1  

Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Winsonsin, USA.

2  

Flack, H. D. (1983). Acta Cryst. A 39, 876–881.

3  

John, B. A., Wood, S. G. & Hawkins, D. R. (2000). Food Chem. Toxicol. 38, 99–111.

4  

Khan, R. (1972). Carbohydr. Res. 25, 504–510.

5  

Kille, J. W., Tesh, J. M. & Mcanulty, P. A. (2000). Food Chem. Toxicol. 38, 43–45.

6  

Mclean, B. I. (2000). Food Chem. Toxicol. 38, 123–129.

7  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

8  

Wu, F.-Z., Long, Z.-Z. & Zhang, P. (2010). J. Chem. Ind. Eng. 61, 2731–2737.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
C12—H12 B⋯O13 0.96 2.51 3.304 (3) 139
C16—H16 B⋯O11 i 0.96 2.57 3.300 (4) 133
C19—H19 B⋯O3 ii 0.96 2.40 3.351 (4) 172
C21—H21 C⋯O3 iii 0.96 2.44 3.396 (4) 174
C22—H22 A⋯O1 0.97 2.49 3.321 (3) 143

Symmetry codes: (i) e-67-o2323-efi2.jpg ; (ii) e-67-o2323-efi3.jpg ; (iii) e-67-o2323-efi4.jpg .