(8-Bromo-2-hydroxy-7-methoxy-1-naph­thyl)(4-chlorobenzoyl)methanone

Mitsui, Ryosuke a Nakaema, Kosuke a Nagasawa, Atsushi a Noguchi, Keiichi b Yonezawa, Noriyuki a * [a ] Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan [b ] Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan

Abstract

In the title compound, C 18H 12BrClO 3, the naphthalene ring system and the benzene ring make a dihedral angle of 82.18 (9)°. The conformation around the central C=O group is such that the C=O bond vector forms a larger angle to the plane of the naphthalene ring system than to the plane of the benzene ring, viz. 60.91 (16)° versus 13.94 (16)°. In the crystal structure, two π–π inter­actions formed between the naphthalene ring systems [centroid–centroid distances of 3.8014 (13) and 3.9823 (13) Å] and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds are present.

Related literature

For the structures of closely related compounds, see: Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008 ); Mitsui, Nakaema, Noguchi & Yonezawa (2008 ); Mitsui et al. (2009 ). e-66-0o676-scheme1.jpg

Experimental

Crystal data

  • C 18H 12BrClO 3

  • M r = 391.64

  • Monoclinic, e-66-0o676-efi1.jpg

  • a = 23.1440 (4) Å

  • b = 7.61524 (14) Å

  • c = 20.2652 (4) Å

  • β = 112.733 (1)°

  • V = 3294.22 (10) Å 3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.00 mm −1

  • T = 193 K

  • 0.35 × 0.10 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical ( NUMABS; Higashi, 1999 ) T min = 0.353, T max = 0.779

  • 12588 measured reflections

  • 3004 independent reflections

  • 2777 reflections with I > 2σ( I)

  • R int = 0.032

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.028

  • wR( F 2) = 0.067

  • S = 1.30

  • 3004 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρ max = 0.88 e Å −3

  • Δρ min = −0.74 e Å −3

Data collection: PROCESS-AUTO (Rigaku, 1998 ); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 ); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks fb2182o, New_Global_Publ_Block, I. DOI: 10.1107/S1600536810006185/is2524sup1.cif

e-66-0o676-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006185/is2524Isup2.hkl

e-66-0o676-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2524).

Acknowledgements

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

Appendices

supplementary crystallographic information

Comment

Recently, we have reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalene, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) and (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al. , 2009). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the interplanar angle between the benzene ring (C12–C17) and the naphthalene ring (C1–C10) is 82.18 (9)°. The C═O bond vector and the least-squares plane of the benzene ring are relatively coplanar [13.94 (16)°]. By contrast, the C═O bond vector and the least-squares plane of the naphthalene ring are twisted [60.91 (15)°]. The conformation of these groups are similar to that of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene. Intriguingly, in the compound (I), there is no intramolecular hydrogen bond in contrast with (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone. This is presumably caused by release of the large steric repulsion brought about by the benzene ring and the bromo group in the naphthalene ring of (I).

In the crystal structure, the molecular packing of (I) is stabilized by van der Waals interactions. The 4-chlorophenyl groups interact with the carbonyl groups [H16···O1 = 2.63 Å] and the bromo groups [H16···Br1 = 3.04 Å] along the b axis, and interact with the naphthalene rings [Cl1···H4 = 2.93 Å, H17···H7 = 2.37 Å] along the a axis (Figs. 2 and 3). The carbonyl groups interact with the hydroxy groups [C11···H2O = 2.80 Å] and the naphthalene rings [O1···C3 = 3.205 (3) Å] along the b axis (Fig. 4). Additionally, the naphthalene rings of neighbouring molecules are nearly parallel, and the π systems of the C5–C10 ring (with centroid Cg) in the naphthalene group are exactly parallel. The perpendicular distance between these aromatic rings is 3.4653 (9) and 3.6483 (9) Å. The centroid–centroid distance between the parallel aromatic rings is 3.8014 (13) and 3.9823 (13) Å, and the lateral offsets are 1.563 and 1.596 Å, indicating the presence of a π–π interaction (Fig. 3). Moreover, the crystal packing is stabilized by intermolecular hydrogen bonding between the carbonyl oxygen and hydrogen atom of the hydroxy group and naphthalene ring of the adjacent molecule viz. O2—H2O···O1 and C3—H3···O1 (Fig. 4 and Table 1).

Experimental

To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (313 mg, 1.00 mmol) in chloroform (5 ml) was added Br 2 (161 mg, 1.01 mmol) drop-wise at 0 °C. The reaction mixture was stirred for 2 h at 0 °C, then poured into aqueous 2 M Na 2S 2O 3 (10 ml). The precipitate was collected by vacuum filtration, and washed with several times with water. The crude material was purified by recrystallization from ethanol to give the title compound as a colorless blocks (m.p. 481.5–483.0 K, yield 333 mg, 85%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO- d 6) δ 10.26 (s, 1H), 7.98 (d, 1H), 7.92 (d, 1H), 7.74 (d, 2H), 7.53 (d, 2H), 7.33 (d, 1H), 7.11 (d, 1H), 3.90 (s, 3H); 13C NMR (75 MHz, DMSO- d 6) δ 195.6, 155.1, 155.0, 138.3, 137.1, 131.8, 131.5, 130.2, 130.2, 128.5, 124.7, 118.4, 116.1, 110.1, 103.1, 56.7; IR (KBr): 3222, 1648, 1617, 1508, 1273, 1090; HRMS ( m/ z): [M + H] + calcd for C 18H 13BrClO 3, 390.9737; found, 390.9705.

Anal. Calcd for C 18H 12BrClO 3: C 55.20, H 3.09. Found: C 55.04, H 2.97.

Refinement

All the H atoms could be located in difference Fourier maps. The OH hydrogen atom was refined, with a bond restraint [O—H = 0.82 (2) Å], and with U iso(H) = 1.2 U eq(O). The C-bound H atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with U iso(H) = 1.2 U eq(C).

Figures

Fig. 1.

The molecular structure of compound (I), showing 50% probability displacement ellipsoids.

The molecular structure of compound (I), showing 50% probability displacement ellipsoids.
Fig. 2.

Partial crystal packing diagram of compound (I), viewed down the c axis. van der Waals interactions are shown as dashed lines.

Partial crystal packing diagram of compound (I), viewed down the c axis. van der Waals interactions are shown as dashed lines.
Fig. 3.

The arrangement of the molecules in the crystal structure, viewed in an oblique direction. van der Waals interactions and π– π interactions are shown as dashed lines.

The arrangement of the molecules in the crystal structure, viewed in an oblique direction. van der Waals interactions and π– π interactions are shown as dashed lines.
Fig. 4.

Partial crystal packing diagram of compound (I), viewed down the b axis. van der Waals interactions and intermolecular hydrogen bonds are shown as dashed lines.

Partial crystal packing diagram of compound (I), viewed down the b axis. van der Waals interactions and intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C 18H 12BrClO 3 F(000) = 1568
M r = 391.64 D x = 1.579 Mg m 3 D m = 1.57 Mg m 3 D m measured by picnomatar method
Monoclinic, C2/ c Melting point = 481.5–483.0 K
Hall symbol: -C 2yc Cu Kα radiation, λ = 1.54187 Å
a = 23.1440 (4) Å Cell parameters from 11710 reflections
b = 7.61524 (14) Å θ = 3.9–68.1°
c = 20.2652 (4) Å µ = 5.00 mm 1
β = 112.733 (1)° T = 193 K
V = 3294.22 (10) Å 3 Block, colorless
Z = 8 0.35 × 0.10 × 0.05 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3004 independent reflections
Radiation source: rotating anode 2777 reflections with I > 2σ( I)
graphite R int = 0.032
Detector resolution: 10.00 pixels mm -1 θ max = 68.2°, θ min = 4.1°
ω scans h = −27→22
Absorption correction: numerical ( NUMABS; Higashi, 1999) k = −9→7
T min = 0.353, T max = 0.779 l = −24→24
12588 measured reflections

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR( F 2) = 0.067 w = 1/[σ 2( F o 2) + (0.0094 P) 2 + 5.4643 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.30 (Δ/σ) max < 0.001
3004 reflections Δρ max = 0.88 e Å 3
213 parameters Δρ min = −0.74 e Å 3
1 restraint Extinction correction: SHELXL, Fc *=kFc[1+0.001xFc 2λ 3/sin(2θ)] -1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00022 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Br1 0.093885 (11) 0.43969 (4) 0.001360 (12) 0.03654 (11)
Cl1 −0.01318 (3) 1.17778 (10) 0.09112 (5) 0.0656 (3)
O1 0.14955 (7) 0.4263 (2) 0.17786 (8) 0.0301 (4)
O2 0.25985 (7) 0.6846 (2) 0.25441 (8) 0.0332 (4)
H2O 0.2875 (10) 0.750 (3) 0.2780 (13) 0.040*
O3 0.13753 (9) 0.3672 (3) −0.10993 (8) 0.0441 (5)
C1 0.21864 (10) 0.5799 (3) 0.13670 (11) 0.0245 (5)
C2 0.26939 (10) 0.6442 (3) 0.19367 (11) 0.0274 (5)
C3 0.32829 (11) 0.6678 (3) 0.18978 (13) 0.0333 (5)
H3 0.3626 0.7123 0.2297 0.040*
C4 0.33562 (11) 0.6261 (3) 0.12813 (13) 0.0362 (6)
H4 0.3754 0.6421 0.1255 0.043*
C5 0.28538 (11) 0.5595 (3) 0.06792 (13) 0.0313 (5)
C6 0.29448 (13) 0.5147 (4) 0.00503 (14) 0.0388 (6)
H6 0.3348 0.5300 0.0039 0.047*
C7 0.24741 (13) 0.4504 (3) −0.05395 (14) 0.0413 (6)
H7 0.2551 0.4197 −0.0953 0.050*
C8 0.18770 (12) 0.4300 (3) −0.05318 (12) 0.0336 (5)
C9 0.17682 (11) 0.4728 (3) 0.00745 (12) 0.0277 (5)
C10 0.22513 (10) 0.5362 (3) 0.07094 (11) 0.0257 (5)
C11 0.15967 (10) 0.5612 (3) 0.15115 (10) 0.0241 (5)
C12 0.11712 (10) 0.7145 (3) 0.13796 (11) 0.0245 (5)
C13 0.05714 (10) 0.6943 (3) 0.13793 (12) 0.0296 (5)
H13 0.0438 0.5822 0.1471 0.036*
C14 0.01708 (11) 0.8358 (3) 0.12465 (13) 0.0358 (6)
H14 −0.0238 0.8222 0.1246 0.043*
C15 0.03738 (11) 0.9985 (3) 0.11142 (14) 0.0374 (6)
C16 0.09668 (12) 1.0226 (3) 0.11234 (14) 0.0382 (6)
H16 0.1101 1.1355 0.1042 0.046*
C17 0.13615 (11) 0.8797 (3) 0.12532 (13) 0.0319 (5)
H17 0.1770 0.8946 0.1256 0.038*
C18 0.14644 (16) 0.3312 (4) −0.17507 (13) 0.0541 (8)
H18A 0.1071 0.2885 −0.2115 0.065*
H18B 0.1790 0.2416 −0.1660 0.065*
H18C 0.1593 0.4390 −0.1921 0.065*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Br1 0.03018 (15) 0.04598 (19) 0.02791 (14) −0.00231 (11) 0.00512 (10) −0.00651 (11)
Cl1 0.0416 (4) 0.0394 (4) 0.1165 (7) 0.0139 (3) 0.0313 (4) 0.0080 (4)
O1 0.0297 (8) 0.0266 (9) 0.0315 (8) −0.0011 (7) 0.0090 (7) 0.0068 (7)
O2 0.0294 (9) 0.0405 (11) 0.0283 (8) −0.0067 (7) 0.0094 (7) −0.0108 (7)
O3 0.0567 (11) 0.0509 (12) 0.0239 (8) −0.0086 (9) 0.0146 (8) −0.0072 (8)
C1 0.0263 (11) 0.0210 (11) 0.0259 (10) 0.0015 (9) 0.0097 (9) 0.0016 (9)
C2 0.0283 (11) 0.0240 (12) 0.0300 (11) 0.0010 (9) 0.0113 (9) −0.0020 (9)
C3 0.0281 (12) 0.0324 (13) 0.0367 (12) −0.0027 (10) 0.0096 (10) −0.0058 (11)
C4 0.0294 (12) 0.0360 (14) 0.0475 (14) −0.0031 (11) 0.0196 (11) −0.0036 (12)
C5 0.0351 (13) 0.0263 (13) 0.0370 (13) −0.0013 (10) 0.0187 (10) −0.0008 (10)
C6 0.0443 (14) 0.0386 (15) 0.0445 (14) −0.0044 (12) 0.0291 (12) −0.0027 (12)
C7 0.0609 (17) 0.0378 (15) 0.0360 (13) −0.0052 (13) 0.0303 (13) −0.0030 (11)
C8 0.0474 (15) 0.0271 (13) 0.0270 (11) −0.0038 (11) 0.0153 (10) −0.0006 (10)
C9 0.0326 (12) 0.0237 (12) 0.0271 (11) 0.0002 (10) 0.0117 (9) 0.0028 (9)
C10 0.0306 (11) 0.0199 (11) 0.0271 (11) 0.0001 (9) 0.0118 (9) 0.0020 (9)
C11 0.0259 (11) 0.0255 (12) 0.0171 (9) −0.0026 (9) 0.0040 (8) −0.0026 (8)
C12 0.0266 (11) 0.0256 (12) 0.0209 (10) −0.0006 (9) 0.0088 (8) −0.0003 (9)
C13 0.0281 (11) 0.0289 (13) 0.0312 (11) −0.0046 (10) 0.0108 (9) −0.0002 (10)
C14 0.0252 (12) 0.0376 (15) 0.0439 (14) −0.0024 (11) 0.0126 (10) −0.0035 (11)
C15 0.0301 (12) 0.0312 (14) 0.0483 (14) 0.0049 (11) 0.0121 (11) −0.0020 (11)
C16 0.0357 (13) 0.0256 (13) 0.0533 (15) −0.0002 (11) 0.0172 (12) 0.0037 (11)
C17 0.0282 (12) 0.0302 (13) 0.0399 (13) −0.0004 (10) 0.0160 (10) 0.0036 (10)
C18 0.087 (2) 0.0512 (19) 0.0263 (13) −0.0088 (17) 0.0243 (14) −0.0067 (12)

Geometric parameters (Å, °)

Br1—C9 1.892 (2) C7—C8 1.397 (4)
Cl1—C15 1.741 (3) C7—H7 0.9500
O1—C11 1.225 (3) C8—C9 1.385 (3)
O2—C2 1.367 (3) C9—C10 1.424 (3)
O2—H2O 0.808 (17) C11—C12 1.484 (3)
O3—C8 1.366 (3) C12—C17 1.389 (3)
O3—C18 1.439 (3) C12—C13 1.396 (3)
C1—C2 1.380 (3) C13—C14 1.379 (3)
C1—C10 1.437 (3) C13—H13 0.9500
C1—C11 1.509 (3) C14—C15 1.387 (4)
C2—C3 1.407 (3) C14—H14 0.9500
C3—C4 1.362 (3) C15—C16 1.378 (3)
C3—H3 0.9500 C16—C17 1.379 (3)
C4—C5 1.415 (3) C16—H16 0.9500
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.411 (3) C18—H18A 0.9800
C5—C10 1.430 (3) C18—H18B 0.9800
C6—C7 1.360 (4) C18—H18C 0.9800
C6—H6 0.9500
C2—O2—H2O 108 (2) C9—C10—C1 126.1 (2)
C8—O3—C18 117.5 (2) C5—C10—C1 117.7 (2)
C2—C1—C10 119.9 (2) O1—C11—C12 120.8 (2)
C2—C1—C11 114.35 (19) O1—C11—C1 120.4 (2)
C10—C1—C11 125.79 (19) C12—C11—C1 118.53 (19)
O2—C2—C1 116.9 (2) C17—C12—C13 119.0 (2)
O2—C2—C3 121.3 (2) C17—C12—C11 120.7 (2)
C1—C2—C3 121.9 (2) C13—C12—C11 120.3 (2)
C4—C3—C2 119.2 (2) C14—C13—C12 120.5 (2)
C4—C3—H3 120.4 C14—C13—H13 119.7
C2—C3—H3 120.4 C12—C13—H13 119.7
C3—C4—C5 121.5 (2) C13—C14—C15 118.9 (2)
C3—C4—H4 119.2 C13—C14—H14 120.6
C5—C4—H4 119.2 C15—C14—H14 120.6
C6—C5—C4 120.4 (2) C16—C15—C14 121.8 (2)
C6—C5—C10 119.8 (2) C16—C15—Cl1 118.3 (2)
C4—C5—C10 119.8 (2) C14—C15—Cl1 119.93 (19)
C7—C6—C5 122.2 (2) C15—C16—C17 118.7 (2)
C7—C6—H6 118.9 C15—C16—H16 120.7
C5—C6—H6 118.9 C17—C16—H16 120.7
C6—C7—C8 119.4 (2) C16—C17—C12 121.1 (2)
C6—C7—H7 120.3 C16—C17—H17 119.5
C8—C7—H7 120.3 C12—C17—H17 119.5
O3—C8—C9 116.2 (2) O3—C18—H18A 109.5
O3—C8—C7 123.5 (2) O3—C18—H18B 109.5
C9—C8—C7 120.2 (2) H18A—C18—H18B 109.5
C8—C9—C10 122.2 (2) O3—C18—H18C 109.5
C8—C9—Br1 116.00 (17) H18A—C18—H18C 109.5
C10—C9—Br1 121.80 (17) H18B—C18—H18C 109.5
C9—C10—C5 116.2 (2)
C10—C1—C2—O2 179.4 (2) C4—C5—C10—C9 178.4 (2)
C11—C1—C2—O2 −1.0 (3) C6—C5—C10—C1 178.6 (2)
C10—C1—C2—C3 −0.5 (3) C4—C5—C10—C1 −1.0 (3)
C11—C1—C2—C3 179.2 (2) C2—C1—C10—C9 −178.4 (2)
O2—C2—C3—C4 −179.9 (2) C11—C1—C10—C9 2.0 (4)
C1—C2—C3—C4 0.0 (4) C2—C1—C10—C5 1.0 (3)
C2—C3—C4—C5 −0.1 (4) C11—C1—C10—C5 −178.6 (2)
C3—C4—C5—C6 −179.0 (2) C2—C1—C11—O1 −87.5 (3)
C3—C4—C5—C10 0.6 (4) C10—C1—C11—O1 92.1 (3)
C4—C5—C6—C7 −180.0 (3) C2—C1—C11—C12 87.5 (2)
C10—C5—C6—C7 0.4 (4) C10—C1—C11—C12 −92.9 (3)
C5—C6—C7—C8 1.0 (4) O1—C11—C12—C17 163.4 (2)
C18—O3—C8—C9 176.5 (2) C1—C11—C12—C17 −11.6 (3)
C18—O3—C8—C7 −4.0 (4) O1—C11—C12—C13 −16.8 (3)
C6—C7—C8—O3 179.7 (2) C1—C11—C12—C13 168.26 (19)
C6—C7—C8—C9 −0.8 (4) C17—C12—C13—C14 0.8 (3)
O3—C8—C9—C10 178.7 (2) C11—C12—C13—C14 −179.0 (2)
C7—C8—C9—C10 −0.9 (4) C12—C13—C14—C15 −0.1 (4)
O3—C8—C9—Br1 −0.6 (3) C13—C14—C15—C16 −1.1 (4)
C7—C8—C9—Br1 179.81 (19) C13—C14—C15—Cl1 177.56 (19)
C8—C9—C10—C5 2.2 (3) C14—C15—C16—C17 1.4 (4)
Br1—C9—C10—C5 −178.52 (16) Cl1—C15—C16—C17 −177.2 (2)
C8—C9—C10—C1 −178.4 (2) C15—C16—C17—C12 −0.6 (4)
Br1—C9—C10—C1 0.9 (3) C13—C12—C17—C16 −0.5 (3)
C6—C5—C10—C9 −2.0 (3) C11—C12—C17—C16 179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
O2—H2O···O1 i 0.81 (2) 1.93 (2) 2.728 (2) 172 (2)
C3—H3···O1 i 0.95 2.58 3.205 (3) 124

Symmetry codes: (i) − x+1/2, y+1/2, − z+1/2.

References

1  

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

2  

Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.

3  

Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E 64, o1278.

4  

Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E 64, o2497.

5  

Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E 65, o543.

6  

Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.

7  

Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.

8  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
O2—H2 O⋯O1 i 0.81 (2) 1.93 (2) 2.728 (2) 172 (2)
C3—H3⋯O1 i 0.95 2.58 3.205 (3) 124

Symmetry code: (i) e-66-0o676-efi2.jpg .