Poly[tetra­kis[μ 2-1,3-bis­(4-pyrid­yl)propane-κ 2 N: N′]dichloridobis(phenyl­acetato)dimanganese(II)]

Liu, Ji-Yong a Xu, Wei a * [a ] Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People’s Republic of China

Abstract

In the title compound, [Mn 2(C 8H 7O 2) 2Cl 2(C 13H 14N 2) 4] n , the two Mn II atoms lie on inversion centers and are connected by the N-heterocyclic ligands into a wave-like lamellar framework structure. One Mn II atom is covalently bonded to two Cl atoms and the other to two benzyl­acetate anions; both Mn atoms show distorted octahedral coordinations.

Related literature

For general background to the use of poly-pyridyl ligand linkers such as 4,4′-bipyridine in the rational design and assembly of coordination polymers, see: Biradha et al. (2006 ). For related structures, see: Carlucci et al. (2002 ). e-66-0m246-scheme1.jpg

Experimental

Crystal data

  • [Mn 2(C 8H 7O 2) 2Cl 2(C 13H 14N 2) 4]

  • M r = 1244.10

  • Triclinic, e-66-0m246-efi1.jpg

  • a = 9.5594 (5) Å

  • b = 13.0091 (6) Å

  • c = 13.8484 (6) Å

  • α = 69.202 (4)°

  • β = 86.318 (4)°

  • γ = 69.910 (5)°

  • V = 1508.74 (13) Å 3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.56 mm −1

  • T = 293 K

  • 0.48 × 0.46 × 0.23 mm

Data collection

  • Oxford Diffraction Xcalibur (Atlas Gemini ultra) diffractometer

  • Absorption correction: multi-scan ( CrysAlis RED; Oxford Diffraction, 2009 ) T min = 0.77, T max = 0.88

  • 10180 measured reflections

  • 5303 independent reflections

  • 4041 reflections with I > 2σ( I)

  • R int = 0.021

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.030

  • wR( F 2) = 0.069

  • S = 0.96

  • 5303 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρ max = 0.23 e Å −3

  • Δρ min = −0.19 e Å −3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 ); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: OLEX2 (Dolomanov et al., 2009 ); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003466/ng2721sup1.cif

e-66-0m246-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003466/ng2721Isup2.hkl

e-66-0m246-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2721).

Acknowledgements

This project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105), and the Education Department of Zhejiang Province. Thanks are also extended the to K. C. Wong Magna Fund in Ningbo University.

Appendices

supplementary crystallographic information

Comment

Over the past few decades, Some poly-pyridyl ligand linkers such as 4,4'-bipyridine have been extensively studied for rational design and assembly of coordination polymers [Biradha et al. (2006)]. However, few studies have been done to 1,3-bis(4-pyridyl)propane (bpp), which has analogous structures to 4,4'-bipyridine ligands. In this paper, we report the synthesis and crystal structure of the title compound.

The molecular unit consists of two Mn 2+ ions (namely Mn1 and Mn2), four bpp molecules, two phenylacetate anions and two Cl - anions. The Mn1 and Mn2 atoms both sit at symmetry inversion centers. Each Mn1 atom is coordinated by four N atoms from different bpp ligands and two two oxygen atoms of monodentate phenylacetate ligands to form a MnN 4O 2 chromophore with oxygen atoms occupied the axial positions. The coordination environment of Mn2 is completed by four N atoms and two Cl - anions, forming a MnN 4Cl 2 chromophore, whose axial positions defined by Cl - anions. The coordination environment of each Mn(II) could be best describes as distorted octahedral geometry, and the slight distortion is reflected on the cisoid angles [84.37 (5)-95.63 (5)°].

It's noting that the flexible bpp ligands presents two different conformations [Carlucci et al. (2002)], with rational N···N distance 9.223Å for TG bpp [torsion angles of 66.1 (4) and 174.1 (4)°] and 8.091Å for GG' bpp [torsion angles of 75.9 (5) and 163.7 (4)°], which lead to different distances of the adjacent Mn1 and Mn2 (13.065 and 10.930 Å). The Mn1 and Mn2 atoms are connected by bpp ligands into a wave-like lamellar framework structure in rectangle (4, 4) topology (Fig.2), which is further stacked into a 3D supramolecular architecture linked by the C—H···O and C—H···Cl hydrogen bonding interactions.

Experimental

A mixture of MnCl 2.4H 2O (0.1977 g, 1.00 mmol) with phenylacetic acid (0.2731 g, 2.00 mmol), 1,3-bis(4-pyridyl)propane (0.1976 g, 1.00 mmol) and NaOH (0.0805 g, 2.00 mmol), in the molar ratio 1:2:1:2, and water (10 ml) was placed in a Parr Teflonlined stainless steel vessel (25 ml); the vessel was sealed and heated to 433 K for 3 d, and the reaction mixture was cooled to room temperature, yellow crystals were obtained from the filtrate after a few days.

Refinement

H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with U iso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level [Symmetry codes: (#1) -x + 2, -y + 2, -z +1; (#2) -x + 1, -y + 1, -z; (#3) -x + 2, -y + 1, -z; (#4) x - 1, y, z; (#5) x + 1, y, z].

ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level [Symmetry codes: (#1) -x + 2, -y + 2, -z +1; (#2) -x + 1, -y + 1, -z; (#3) -x + 2, -y + 1, -z; (#4) x - 1, y, z; (#5) x + 1, y, z].
Fig. 2.

The two-dimensional layer of the compound. Hydrogen atoms are omitted for clarity.

The two-dimensional layer of the compound. Hydrogen atoms are omitted for clarity.

Crystal data

[Mn 2(C 8H 7O 2) 2Cl 2(C 13H 14N 2) 4] Z = 1
M r = 1244.10 F(000) = 650
Triclinic, P1 D x = 1.369 Mg m 3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5594 (5) Å Cell parameters from 5358 reflections
b = 13.0091 (6) Å θ = 3.3–29.3°
c = 13.8484 (6) Å µ = 0.56 mm 1
α = 69.202 (4)° T = 293 K
β = 86.318 (4)° Block, yellow
γ = 69.910 (5)° 0.48 × 0.46 × 0.23 mm
V = 1508.74 (13) Å 3

Data collection

Oxford Diffraction Xcalibur (Atlas Gemini ultra) diffractometer 5303 independent reflections
Radiation source: fine-focus sealed tube 4041 reflections with I > 2σ( I)
graphite R int = 0.021
Detector resolution: 10.3592 pixels mm -1 θ max = 25.0°, θ min = 3.4°
ω scans h = −11→11
Absorption correction: multi-scan ( CrysAlis RED; Oxford Diffraction, 2009) k = −13→15
T min = 0.77, T max = 0.88 l = −16→16
10180 measured reflections

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.030 H-atom parameters constrained
wR( F 2) = 0.069 w = 1/[σ 2( F o 2) + (0.0355 P) 2] where P = ( F o 2 + 2 F c 2)/3
S = 0.96 (Δ/σ) max < 0.001
5303 reflections Δρ max = 0.23 e Å 3
383 parameters Δρ min = −0.19 e Å 3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc *=kFc[1+0.001xFc 2λ 3/sin(2θ)] -1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0064 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Mn1 1.0000 1.0000 0.5000 0.02534 (11)
Mn2 0.5000 0.5000 0.0000 0.02969 (12)
Cl 0.34313 (5) 0.44105 (5) 0.14744 (4) 0.04018 (14)
O1 0.75819 (12) 1.08965 (11) 0.46913 (9) 0.0362 (3)
O2 0.64269 (15) 1.08883 (14) 0.33545 (10) 0.0522 (4)
N1 1.00849 (15) 0.85804 (12) 0.42979 (11) 0.0288 (3)
N2 0.69038 (16) 0.45962 (13) 0.12058 (11) 0.0312 (4)
N3 1.05314 (16) 1.09985 (13) 0.33750 (11) 0.0299 (3)
N4 1.40150 (16) 0.69381 (14) −0.00685 (12) 0.0352 (4)
C1 1.1512 (2) 0.71106 (18) 0.36191 (16) 0.0417 (5)
H1 1.2449 0.6678 0.3479 0.050*
C2 1.1387 (2) 0.79193 (18) 0.40728 (15) 0.0396 (5)
H2 1.2256 0.8012 0.4232 0.047*
C3 0.8877 (2) 0.84106 (17) 0.40593 (15) 0.0383 (5)
H3 0.7952 0.8851 0.4207 0.046*
C4 0.8926 (2) 0.76112 (18) 0.36018 (16) 0.0412 (5)
H4 0.8043 0.7531 0.3450 0.049*
C5 1.0260 (2) 0.69363 (16) 0.33697 (14) 0.0313 (4)
C6 1.0345 (2) 0.60283 (17) 0.29095 (15) 0.0380 (5)
H6B 1.1264 0.5864 0.2560 0.046*
H6A 0.9517 0.6335 0.2398 0.046*
C7 1.0295 (2) 0.49008 (16) 0.37315 (14) 0.0334 (4)
H7A 0.9340 0.5064 0.4039 0.040*
H7B 1.1066 0.4643 0.4273 0.040*
C8 1.0510 (2) 0.38992 (16) 0.33360 (14) 0.0324 (4)
H8B 1.1438 0.3762 0.2993 0.039*
H8A 1.0597 0.3191 0.3923 0.039*
C9 0.92566 (19) 0.41373 (15) 0.25951 (13) 0.0282 (4)
C10 0.9306 (2) 0.46458 (17) 0.15395 (14) 0.0349 (5)
H10 1.0132 0.4847 0.1270 0.042*
C11 0.8136 (2) 0.48548 (17) 0.08854 (14) 0.0357 (5)
H11 0.8204 0.5197 0.0178 0.043*
C12 0.6865 (2) 0.40978 (17) 0.22292 (15) 0.0379 (5)
H12 0.6029 0.3901 0.2480 0.045*
C13 0.7992 (2) 0.38592 (17) 0.29348 (14) 0.0368 (5)
H13 0.7904 0.3511 0.3639 0.044*
C14 1.0025 (2) 1.17152 (17) 0.15429 (14) 0.0367 (5)
H14 0.9354 1.1924 0.0991 0.044*
C15 0.9625 (2) 1.13025 (16) 0.25450 (14) 0.0339 (4)
H15 0.8686 1.1232 0.2649 0.041*
C16 1.1850 (2) 1.11445 (17) 0.31863 (15) 0.0354 (5)
H16 1.2483 1.0968 0.3749 0.043*
C17 1.2331 (2) 1.15408 (17) 0.22097 (15) 0.0391 (5)
H17 1.3266 1.1620 0.2126 0.047*
C18 1.1416 (2) 1.18203 (16) 0.13546 (15) 0.0352 (5)
C19 1.1965 (3) 1.21582 (18) 0.02808 (16) 0.0487 (6)
H19B 1.2622 1.2595 0.0242 0.058*
H19A 1.1122 1.2661 −0.0217 0.058*
C20 1.2812 (2) 1.10655 (19) 0.00013 (17) 0.0507 (6)
H20B 1.3367 1.1287 −0.0602 0.061*
H20A 1.3523 1.0496 0.0570 0.061*
C21 1.1775 (3) 1.0502 (2) −0.02233 (18) 0.0550 (6)
H21A 1.1016 1.0501 0.0277 0.066*
H21B 1.1275 1.0973 −0.0905 0.066*
C22 1.2571 (2) 0.92665 (19) −0.01826 (16) 0.0416 (5)
C23 1.3214 (2) 0.89998 (18) −0.10331 (15) 0.0417 (5)
H23 1.3170 0.9596 −0.1662 0.050*
C24 1.3917 (2) 0.78443 (18) −0.09375 (15) 0.0365 (5)
H24 1.4348 0.7688 −0.1514 0.044*
C25 1.3406 (2) 0.71987 (19) 0.07506 (15) 0.0462 (5)
H25 1.3463 0.6586 0.1370 0.055*
C26 1.2703 (2) 0.8323 (2) 0.07211 (17) 0.0516 (6)
H26 1.2310 0.8454 0.1316 0.062*
C27 0.64387 (19) 1.11445 (16) 0.41277 (14) 0.0309 (4)
C28 0.4906 (2) 1.1779 (2) 0.44208 (17) 0.0562 (6)
H28B 0.4395 1.2429 0.3804 0.067*
H28A 0.4351 1.1245 0.4604 0.067*
C29 0.47920 (19) 1.22539 (19) 0.52763 (16) 0.0391 (5)
C30 0.5024 (2) 1.1515 (2) 0.62991 (18) 0.0489 (6)
H30 0.5273 1.0713 0.6462 0.059*
C31 0.4885 (2) 1.1967 (3) 0.70858 (19) 0.0643 (7)
H31 0.5078 1.1462 0.7772 0.077*
C32 0.4469 (3) 1.3141 (3) 0.6860 (3) 0.0713 (9)
H32 0.4356 1.3440 0.7390 0.086*
C33 0.4220 (3) 1.3873 (3) 0.5859 (3) 0.0703 (8)
H33 0.3929 1.4677 0.5704 0.084*
C34 0.4393 (2) 1.3440 (2) 0.50720 (19) 0.0544 (6)
H34 0.4239 1.3955 0.4389 0.065*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Mn1 0.0254 (2) 0.0287 (2) 0.0267 (2) −0.00973 (17) 0.00331 (16) −0.01524 (19)
Mn2 0.0266 (2) 0.0352 (2) 0.0289 (2) −0.01084 (18) 0.00248 (17) −0.0132 (2)
Cl 0.0320 (3) 0.0543 (3) 0.0350 (3) −0.0170 (2) 0.0077 (2) −0.0155 (3)
O1 0.0243 (6) 0.0468 (9) 0.0401 (8) −0.0071 (6) −0.0008 (6) −0.0228 (7)
O2 0.0481 (8) 0.0678 (11) 0.0427 (9) −0.0074 (8) −0.0051 (7) −0.0328 (9)
N1 0.0308 (8) 0.0281 (9) 0.0316 (9) −0.0120 (7) 0.0024 (7) −0.0137 (8)
N2 0.0319 (8) 0.0328 (9) 0.0306 (9) −0.0118 (7) 0.0016 (7) −0.0126 (8)
N3 0.0316 (8) 0.0299 (9) 0.0323 (9) −0.0111 (7) 0.0041 (7) −0.0157 (8)
N4 0.0369 (9) 0.0394 (10) 0.0313 (9) −0.0116 (8) 0.0017 (7) −0.0162 (9)
C1 0.0298 (10) 0.0485 (13) 0.0595 (14) −0.0130 (10) 0.0121 (10) −0.0356 (12)
C2 0.0279 (10) 0.0485 (13) 0.0573 (13) −0.0175 (10) 0.0071 (9) −0.0326 (12)
C3 0.0276 (10) 0.0374 (12) 0.0560 (13) −0.0078 (9) 0.0054 (9) −0.0272 (11)
C4 0.0290 (10) 0.0444 (13) 0.0621 (14) −0.0134 (9) −0.0010 (9) −0.0313 (12)
C5 0.0374 (10) 0.0305 (11) 0.0317 (10) −0.0139 (9) 0.0035 (8) −0.0156 (9)
C6 0.0477 (12) 0.0397 (12) 0.0384 (12) −0.0200 (10) 0.0090 (9) −0.0237 (11)
C7 0.0343 (10) 0.0407 (12) 0.0330 (11) −0.0143 (9) 0.0011 (8) −0.0205 (10)
C8 0.0366 (10) 0.0281 (11) 0.0325 (10) −0.0093 (9) −0.0032 (8) −0.0119 (9)
C9 0.0333 (10) 0.0217 (10) 0.0327 (11) −0.0074 (8) −0.0003 (8) −0.0146 (9)
C10 0.0369 (11) 0.0421 (12) 0.0340 (11) −0.0220 (10) 0.0049 (9) −0.0153 (10)
C11 0.0419 (11) 0.0412 (12) 0.0268 (10) −0.0196 (10) 0.0027 (9) −0.0101 (10)
C12 0.0340 (11) 0.0458 (13) 0.0376 (12) −0.0199 (10) 0.0063 (9) −0.0138 (11)
C13 0.0422 (11) 0.0447 (13) 0.0263 (10) −0.0192 (10) 0.0035 (9) −0.0118 (10)
C14 0.0438 (12) 0.0343 (11) 0.0313 (11) −0.0092 (9) 0.0007 (9) −0.0144 (10)
C15 0.0292 (10) 0.0374 (12) 0.0375 (12) −0.0110 (9) 0.0036 (9) −0.0168 (10)
C16 0.0346 (10) 0.0369 (12) 0.0409 (12) −0.0142 (9) 0.0028 (9) −0.0191 (10)
C17 0.0376 (11) 0.0361 (12) 0.0499 (13) −0.0185 (10) 0.0108 (10) −0.0182 (11)
C18 0.0480 (12) 0.0213 (10) 0.0385 (11) −0.0126 (9) 0.0128 (10) −0.0141 (10)
C19 0.0703 (15) 0.0333 (12) 0.0449 (13) −0.0235 (11) 0.0222 (11) −0.0144 (11)
C20 0.0639 (14) 0.0472 (14) 0.0469 (13) −0.0228 (12) 0.0251 (11) −0.0234 (12)
C21 0.0581 (14) 0.0504 (15) 0.0564 (15) −0.0063 (12) 0.0010 (11) −0.0305 (13)
C22 0.0422 (11) 0.0436 (13) 0.0434 (13) −0.0093 (10) 0.0005 (10) −0.0253 (12)
C23 0.0496 (12) 0.0405 (13) 0.0356 (11) −0.0136 (10) 0.0021 (9) −0.0160 (11)
C24 0.0412 (11) 0.0404 (12) 0.0309 (11) −0.0135 (10) 0.0042 (9) −0.0170 (11)
C25 0.0618 (14) 0.0475 (14) 0.0290 (11) −0.0181 (11) 0.0048 (10) −0.0142 (11)
C26 0.0678 (15) 0.0540 (15) 0.0366 (13) −0.0148 (12) 0.0114 (11) −0.0276 (13)
C27 0.0320 (10) 0.0283 (11) 0.0331 (11) −0.0114 (8) 0.0018 (9) −0.0107 (9)
C28 0.0266 (11) 0.0852 (18) 0.0659 (15) −0.0084 (11) 0.0010 (10) −0.0474 (15)
C29 0.0187 (9) 0.0516 (14) 0.0517 (14) −0.0080 (9) 0.0041 (9) −0.0280 (12)
C30 0.0305 (11) 0.0498 (14) 0.0603 (15) −0.0047 (10) 0.0035 (10) −0.0213 (13)
C31 0.0351 (12) 0.100 (2) 0.0500 (14) −0.0094 (14) 0.0028 (11) −0.0306 (16)
C32 0.0425 (14) 0.112 (3) 0.094 (2) −0.0270 (16) 0.0149 (14) −0.078 (2)
C33 0.0529 (15) 0.0646 (19) 0.119 (3) −0.0260 (14) 0.0207 (16) −0.059 (2)
C34 0.0408 (12) 0.0527 (15) 0.0654 (16) −0.0159 (11) 0.0111 (11) −0.0176 (14)

Geometric parameters (Å, °)

Mn1—O1 2.1925 (11) C11—H11 0.9300
Mn1—O1 i 2.1925 (11) C12—C13 1.380 (2)
Mn1—N3 i 2.2891 (15) C12—H12 0.9300
Mn1—N3 2.2891 (15) C13—H13 0.9300
Mn1—N1 2.3504 (12) C14—C15 1.380 (3)
Mn1—N1 i 2.3505 (12) C14—C18 1.382 (3)
Mn2—N4 ii 2.3374 (15) C14—H14 0.9300
Mn2—N4 iii 2.3374 (15) C15—H15 0.9300
Mn2—N2 2.3425 (14) C16—C17 1.376 (3)
Mn2—N2 iv 2.3425 (14) C16—H16 0.9300
Mn2—Cl iv 2.5081 (5) C17—C18 1.381 (3)
Mn2—Cl 2.5081 (5) C17—H17 0.9300
O1—C27 1.263 (2) C18—C19 1.508 (3)
O2—C27 1.2309 (19) C19—C20 1.545 (3)
N1—C3 1.330 (2) C19—H19B 0.9700
N1—C2 1.338 (2) C19—H19A 0.9700
N2—C12 1.337 (2) C20—C21 1.522 (3)
N2—C11 1.340 (2) C20—H20B 0.9700
N3—C16 1.334 (2) C20—H20A 0.9700
N3—C15 1.341 (2) C21—C22 1.506 (3)
N4—C24 1.333 (2) C21—H21A 0.9700
N4—C25 1.339 (2) C21—H21B 0.9700
N4—Mn2 v 2.3374 (15) C22—C26 1.382 (3)
C1—C2 1.374 (2) C22—C23 1.391 (2)
C1—C5 1.378 (2) C23—C24 1.380 (3)
C1—H1 0.9300 C23—H23 0.9300
C2—H2 0.9300 C24—H24 0.9300
C3—C4 1.384 (2) C25—C26 1.371 (3)
C3—H3 0.9300 C25—H25 0.9300
C4—C5 1.371 (2) C26—H26 0.9300
C4—H4 0.9300 C27—C28 1.524 (3)
C5—C6 1.507 (2) C28—C29 1.501 (2)
C6—C7 1.518 (3) C28—H28B 0.9700
C6—H6B 0.9700 C28—H28A 0.9700
C6—H6A 0.9700 C29—C30 1.381 (3)
C7—C8 1.532 (2) C29—C34 1.381 (3)
C7—H7A 0.9700 C30—C31 1.391 (3)
C7—H7B 0.9700 C30—H30 0.9300
C8—C9 1.504 (2) C31—C32 1.360 (4)
C8—H8B 0.9700 C31—H31 0.9300
C8—H8A 0.9700 C32—C33 1.354 (4)
C9—C10 1.379 (2) C32—H32 0.9300
C9—C13 1.385 (2) C33—C34 1.372 (3)
C10—C11 1.376 (2) C33—H33 0.9300
C10—H10 0.9300 C34—H34 0.9300
O1—Mn1—O1 i 180.00 (8) N2—C11—H11 118.0
O1—Mn1—N3 i 86.18 (5) C10—C11—H11 118.0
O1 i—Mn1—N3 i 93.82 (5) N2—C12—C13 123.72 (16)
O1—Mn1—N3 93.82 (5) N2—C12—H12 118.1
O1 i—Mn1—N3 86.18 (5) C13—C12—H12 118.1
N3 i—Mn1—N3 180.00 (7) C12—C13—C9 120.04 (17)
O1—Mn1—N1 94.53 (4) C12—C13—H13 120.0
O1 i—Mn1—N1 85.47 (4) C9—C13—H13 120.0
N3 i—Mn1—N1 95.63 (5) C15—C14—C18 120.39 (17)
N3—Mn1—N1 84.37 (5) C15—C14—H14 119.8
O1—Mn1—N1 i 85.47 (4) C18—C14—H14 119.8
O1 i—Mn1—N1 i 94.53 (4) N3—C15—C14 122.83 (16)
N3 i—Mn1—N1 i 84.37 (5) N3—C15—H15 118.6
N3—Mn1—N1 i 95.63 (5) C14—C15—H15 118.6
N1—Mn1—N1 i 179.999 (2) N3—C16—C17 124.04 (17)
N4 ii—Mn2—N4 iii 180.0 N3—C16—H16 118.0
N4 ii—Mn2—N2 89.48 (5) C17—C16—H16 118.0
N4 iii—Mn2—N2 90.52 (5) C16—C17—C18 119.62 (16)
N4 ii—Mn2—N2 iv 90.52 (5) C16—C17—H17 120.2
N4 iii—Mn2—N2 iv 89.48 (5) C18—C17—H17 120.2
N2—Mn2—N2 iv 180.0 C17—C18—C14 116.66 (17)
N4 ii—Mn2—Cl iv 90.26 (4) C17—C18—C19 120.68 (17)
N4 iii—Mn2—Cl iv 89.74 (4) C14—C18—C19 122.58 (18)
N2—Mn2—Cl iv 91.14 (4) C18—C19—C20 111.16 (17)
N2 iv—Mn2—Cl iv 88.86 (4) C18—C19—H19B 109.4
N4 ii—Mn2—Cl 89.74 (4) C20—C19—H19B 109.4
N4 iii—Mn2—Cl 90.26 (4) C18—C19—H19A 109.4
N2—Mn2—Cl 88.86 (4) C20—C19—H19A 109.4
N2 iv—Mn2—Cl 91.14 (4) H19B—C19—H19A 108.0
Cl iv—Mn2—Cl 180.0 C21—C20—C19 112.69 (18)
C27—O1—Mn1 146.73 (11) C21—C20—H20B 109.1
C3—N1—C2 115.84 (14) C19—C20—H20B 109.1
C3—N1—Mn1 123.51 (11) C21—C20—H20A 109.1
C2—N1—Mn1 120.59 (10) C19—C20—H20A 109.1
C12—N2—C11 115.74 (15) H20B—C20—H20A 107.8
C12—N2—Mn2 124.04 (11) C22—C21—C20 113.31 (18)
C11—N2—Mn2 120.22 (12) C22—C21—H21A 108.9
C16—N3—C15 116.38 (15) C20—C21—H21A 108.9
C16—N3—Mn1 121.77 (12) C22—C21—H21B 108.9
C15—N3—Mn1 121.06 (11) C20—C21—H21B 108.9
C24—N4—C25 116.24 (17) H21A—C21—H21B 107.7
C24—N4—Mn2 v 122.37 (11) C26—C22—C23 116.10 (19)
C25—N4—Mn2 v 121.18 (14) C26—C22—C21 120.97 (17)
C2—C1—C5 120.49 (17) C23—C22—C21 122.9 (2)
C2—C1—H1 119.8 C24—C23—C22 119.6 (2)
C5—C1—H1 119.8 C24—C23—H23 120.2
N1—C2—C1 123.68 (16) C22—C23—H23 120.2
N1—C2—H2 118.2 N4—C24—C23 124.00 (17)
C1—C2—H2 118.2 N4—C24—H24 118.0
N1—C3—C4 123.36 (16) C23—C24—H24 118.0
N1—C3—H3 118.3 N4—C25—C26 123.3 (2)
C4—C3—H3 118.3 N4—C25—H25 118.4
C5—C4—C3 120.74 (16) C26—C25—H25 118.4
C5—C4—H4 119.6 C25—C26—C22 120.80 (18)
C3—C4—H4 119.6 C25—C26—H26 119.6
C4—C5—C1 115.90 (15) C22—C26—H26 119.6
C4—C5—C6 121.64 (15) O2—C27—O1 125.80 (17)
C1—C5—C6 122.42 (16) O2—C27—C28 114.92 (16)
C5—C6—C7 111.65 (14) O1—C27—C28 119.24 (15)
C5—C6—H6B 109.3 C29—C28—C27 119.64 (15)
C7—C6—H6B 109.3 C29—C28—H28B 107.4
C5—C6—H6A 109.3 C27—C28—H28B 107.4
C7—C6—H6A 109.3 C29—C28—H28A 107.4
H6B—C6—H6A 108.0 C27—C28—H28A 107.4
C6—C7—C8 114.66 (14) H28B—C28—H28A 106.9
C6—C7—H7A 108.6 C30—C29—C34 117.88 (19)
C8—C7—H7A 108.6 C30—C29—C28 120.6 (2)
C6—C7—H7B 108.6 C34—C29—C28 121.4 (2)
C8—C7—H7B 108.6 C29—C30—C31 120.1 (2)
H7A—C7—H7B 107.6 C29—C30—H30 119.9
C9—C8—C7 113.34 (15) C31—C30—H30 119.9
C9—C8—H8B 108.9 C32—C31—C30 120.6 (3)
C7—C8—H8B 108.9 C32—C31—H31 119.7
C9—C8—H8A 108.9 C30—C31—H31 119.7
C7—C8—H8A 108.9 C33—C32—C31 119.6 (2)
H8B—C8—H8A 107.7 C33—C32—H32 120.2
C10—C9—C13 116.48 (16) C31—C32—H32 120.2
C10—C9—C8 121.62 (15) C32—C33—C34 120.6 (2)
C13—C9—C8 121.89 (16) C32—C33—H33 119.7
C11—C10—C9 120.01 (16) C34—C33—H33 119.7
C11—C10—H10 120.0 C33—C34—C29 121.1 (2)
C9—C10—H10 120.0 C33—C34—H34 119.4
N2—C11—C10 124.01 (17) C29—C34—H34 119.4

Symmetry codes: (i) − x+2, − y+2, − z+1; (ii) − x+2, − y+1, − z; (iii) x−1, y, z; (iv) − x+1, − y+1, − z; (v) x+1, y, z.

References

1  

Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.

2  

Carlucci, L., Ciani, G., Proserpiob, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.

3  

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

4  

Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.

5  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.