4,4′-(Propane-1,3-di­yl)dipyridinium tetra­chloridonickelate(II)

Du, Zhong-Xiang a * Qu, Ju-Ping b [a ] Department of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People’s Republic of China [b ] Department of Chemical Engineering and Environmental Engineering, Jiaozuo University, Jiaozuo, Henan 450042, People’s Republic of China

Abstract

The title compound, (C 13H 16N 2)[NiCl 4] or (H 2bpp)·NiCl 4 [bpp is 1,3-bis­(4-pyrid­yl)propane], is isostructural with its already reported Cu, Zn and Hg analogues. The structure consists of a doubly charged (H 2bpp) 2+ cation and a tetra­hedral [NiCl 4] 2− dianion. Both pyridyl N atoms are protonated and form a (H 2bpp) 2+ cation which adopts an antianti conformation with a dihedral angle of 6.287 (7)° between the pyridyl rings. The two pyridyl N atoms are both involved in strong N—H⋯Cl hydrogen bonds, which link both units into a dimer.

Related literature

For the isostructural Cu, Zn and Hg analogues, see: Kao & Chen (2004 ). e-65-m1656-scheme1.jpg

Experimental

Crystal data

  • (C 13H 16N 2)[NiCl 4]

  • M r = 400.79

  • Monoclinic, e-65-m1656-efi1.jpg

  • a = 7.2358 (7) Å

  • b = 20.773 (2) Å

  • c = 11.1246 (11) Å

  • β = 90.627 (1)°

  • V = 1672.1 (3) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm −1

  • T = 294 K

  • 0.36 × 0.25 × 0.24 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan ( SADABS; Sheldrick, 1996 ) T min = 0.565, T max = 0.673

  • 12584 measured reflections

  • 3107 independent reflections

  • 2556 reflections with I > 2σ( I)

  • R int = 0.026

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.029

  • wR( F 2) = 0.045

  • S = 1.90

  • 3107 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρ max = 0.36 e Å −3

  • Δρ min = −0.45 e Å −3

Data collection: APEX2 (Bruker, 2004 ); cell refinement: SAINT (Bruker, 2004 ); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: SHELXTL (Sheldrick, 2008 ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809048843/bg2307sup1.cif

e-65-m1656-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809048843/bg2307Isup2.hkl

e-65-m1656-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2307).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20471026 and 20331010) and the Natural Science Foundation of Henan province (No. 0311021200).

Appendices

supplementary crystallographic information

Comment

The title complex (I) is isostructural with its analogues (H 2bpp).CuCl 4 and (H 2bpp).MCl 4.H 2O( M = Zn, Hg)(Kao and Chen, 2004), whose structures have been described in detail. The structure consists of a doubly charged (H 2bpp) 2+ cation and a tetrahedral NiCl 4 2- dianion (Figure 1). Both pyridyl N atoms are protonated and form a (H 2bpp) 2+ cation, which adopts an anti-anti conformations with a dihedral angle of 6.287° between the two pyridyl rings. The two pyridyl N atoms are both involved in strong N—H···Cl hydrogen bonds (Table 1) and link both units into a dimer (Figure 2).

Experimental

NiCl 2.6H 2O (1.0 mmol, 0.237 g), bpp (1.0 mmol, 0.198 g) and oxydiacetatic acid (1.0 mmol, 0.134 g) were dissolved in 20 ml of methanol-H 2O ( v/ v, 1:3). Then the mixture was sealed in a 25 mL Teflon reactor and kept under autogeneous pressure at 403 K for 5 days. After cooling to room temperature at a rate of 6°C.h -1, blue block shaped crystals suitable for X-ray diffraction were grown from the filtrate by slow evaporation. Yield: 200 mg (50% based on Ni). Anal. Calcd for C 13H 16Cl 4N 2Ni(%): C, 38.92; H, 3.99; N, 6.98. Found: C, 38.85; H, 4.03; N, 6.85. CCDC 752249.

Refinement

H atoms bonded to C and N atoms were positioned geometrically with C—H distance 0.93–0.97Å and N—H distances of 0.8600 Å, and treated as riding atoms, with U iso(H)=1.2 U eq(C, N).

Figures

Fig. 1.

Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.

The dimer of (I) formed by N—H···Cl hydrogen bonds showing as dashed lines.

The dimer of (I) formed by N—H···Cl hydrogen bonds showing as dashed lines.

Crystal data

(C 13H 16N 2)[NiCl 4] F(000) = 816
M r = 400.79 D x = 1.592 Mg m 3
Monoclinic, P2 1/ n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3858 reflections
a = 7.2358 (7) Å θ = 2.7–25.6°
b = 20.773 (2) Å µ = 1.79 mm 1
c = 11.1246 (11) Å T = 294 K
β = 90.627 (1)° Block, blue
V = 1672.1 (3) Å 3 0.36 × 0.25 × 0.24 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3107 independent reflections
Radiation source: fine-focus sealed tube 2556 reflections with I > 2σ( I)
graphite R int = 0.026
φ and ω scans θ max = 25.5°, θ min = 2.7°
Absorption correction: multi-scan ( SADABS; Sheldrick, 1996) h = −8→8
T min = 0.565, T max = 0.673 k = −24→25
12584 measured reflections l = −13→13

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR( F 2) = 0.045 H-atom parameters constrained
S = 1.90 w = 1/[σ 2( F o 2) + (0. P) 2] where P = ( F o 2 + 2 F c 2)/3
3107 reflections (Δ/σ) max < 0.001
181 parameters Δρ max = 0.36 e Å 3
0 restraints Δρ min = −0.45 e Å 3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
C1 0.9569 (3) 0.39288 (13) 0.4993 (2) 0.0604 (7)
H1 0.9940 0.4331 0.5272 0.073*
C2 0.7956 (3) 0.38678 (11) 0.4357 (2) 0.0534 (7)
H2 0.7226 0.4228 0.4204 0.064*
C3 0.7409 (3) 0.32701 (11) 0.3941 (2) 0.0425 (6)
C4 0.8519 (3) 0.27500 (12) 0.4223 (2) 0.0546 (7)
H4 0.8166 0.2340 0.3976 0.066*
C5 1.0119 (4) 0.28295 (13) 0.4855 (2) 0.0611 (7)
H5 1.0862 0.2476 0.5034 0.073*
C6 0.5730 (3) 0.31581 (10) 0.3173 (2) 0.0544 (7)
H6A 0.5005 0.2821 0.3546 0.065*
H6B 0.6135 0.2995 0.2403 0.065*
C7 0.4473 (3) 0.37229 (10) 0.2940 (2) 0.0462 (6)
H7A 0.5157 0.4064 0.2548 0.055*
H7B 0.4019 0.3888 0.3697 0.055*
C8 0.2851 (3) 0.35192 (10) 0.2146 (2) 0.0472 (6)
H8A 0.3340 0.3356 0.1397 0.057*
H8B 0.2227 0.3165 0.2539 0.057*
C9 0.1435 (3) 0.40250 (11) 0.1848 (2) 0.0403 (6)
C10 −0.0087 (3) 0.38588 (11) 0.1149 (2) 0.0497 (7)
H10 −0.0194 0.3442 0.0853 0.060*
C11 −0.1429 (3) 0.42979 (12) 0.0891 (2) 0.0551 (7)
H11 −0.2454 0.4180 0.0429 0.066*
C12 0.0190 (3) 0.50868 (12) 0.1949 (2) 0.0594 (7)
H12 0.0274 0.5511 0.2213 0.071*
C13 0.1564 (3) 0.46566 (11) 0.2227 (2) 0.0519 (7)
H13 0.2589 0.4791 0.2673 0.062*
Cl1 −0.06721 (8) 0.21383 (3) 0.12980 (6) 0.05653 (19)
Cl2 −0.12187 (9) 0.05327 (3) 0.13195 (6) 0.05657 (19)
Cl3 −0.06868 (9) 0.09147 (3) 0.42665 (6) 0.0606 (2)
Cl4 0.29570 (8) 0.16495 (3) 0.30041 (6) 0.0633 (2)
N1 1.0614 (3) 0.34138 (11) 0.52139 (17) 0.0574 (6)
H1A 1.1641 0.3462 0.5601 0.069*
N2 −0.1267 (3) 0.48968 (10) 0.13015 (19) 0.0558 (6)
H2A −0.2130 0.5170 0.1143 0.067*
Ni1 0.01874 (4) 0.129429 (13) 0.24398 (3) 0.03832 (9)

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
C1 0.0602 (19) 0.0548 (17) 0.066 (2) −0.0016 (15) −0.0134 (15) 0.0003 (15)
C2 0.0527 (17) 0.0443 (15) 0.0628 (18) 0.0060 (12) −0.0155 (14) 0.0009 (13)
C3 0.0421 (15) 0.0413 (14) 0.0441 (15) 0.0019 (11) −0.0031 (12) 0.0036 (12)
C4 0.0569 (17) 0.0454 (15) 0.0613 (18) 0.0086 (13) −0.0117 (14) −0.0033 (14)
C5 0.0621 (19) 0.0602 (19) 0.0610 (19) 0.0188 (15) −0.0051 (15) 0.0026 (16)
C6 0.0508 (17) 0.0451 (15) 0.0669 (19) 0.0019 (12) −0.0131 (14) 0.0016 (14)
C7 0.0389 (14) 0.0463 (14) 0.0533 (16) −0.0002 (12) −0.0049 (12) 0.0005 (13)
C8 0.0482 (16) 0.0417 (14) 0.0515 (16) 0.0019 (12) −0.0069 (12) 0.0035 (12)
C9 0.0373 (14) 0.0404 (14) 0.0433 (15) −0.0034 (11) −0.0009 (11) 0.0003 (12)
C10 0.0482 (16) 0.0410 (15) 0.0597 (18) −0.0033 (12) −0.0107 (13) −0.0013 (13)
C11 0.0455 (16) 0.0567 (17) 0.0627 (19) −0.0034 (14) −0.0103 (13) 0.0016 (15)
C12 0.0577 (18) 0.0470 (16) 0.073 (2) 0.0026 (14) −0.0017 (15) −0.0097 (15)
C13 0.0435 (15) 0.0476 (15) 0.0643 (18) −0.0020 (12) −0.0090 (13) −0.0059 (14)
Cl1 0.0603 (4) 0.0411 (4) 0.0678 (5) −0.0059 (3) −0.0164 (3) 0.0108 (3)
Cl2 0.0692 (5) 0.0397 (4) 0.0607 (4) −0.0071 (3) −0.0095 (3) −0.0059 (3)
Cl3 0.0596 (4) 0.0696 (5) 0.0525 (4) −0.0197 (3) −0.0093 (3) 0.0093 (4)
Cl4 0.0462 (4) 0.0542 (4) 0.0892 (5) −0.0103 (3) −0.0145 (4) 0.0059 (4)
N1 0.0438 (14) 0.0767 (16) 0.0514 (14) 0.0044 (12) −0.0110 (11) 0.0038 (13)
N2 0.0462 (14) 0.0540 (14) 0.0671 (16) 0.0139 (11) 0.0006 (11) 0.0067 (12)
Ni1 0.03720 (18) 0.03082 (16) 0.04678 (19) −0.00285 (13) −0.00648 (13) 0.00183 (15)

Geometric parameters (Å, °)

C1—N1 1.332 (3) C8—H8A 0.9700
C1—C2 1.364 (3) C8—H8B 0.9700
C1—H1 0.9300 C9—C13 1.381 (3)
C2—C3 1.381 (3) C9—C10 1.385 (3)
C2—H2 0.9300 C10—C11 1.361 (3)
C3—C4 1.380 (3) C10—H10 0.9300
C3—C6 1.496 (3) C11—N2 1.330 (3)
C4—C5 1.358 (3) C11—H11 0.9300
C4—H4 0.9300 C12—N2 1.330 (3)
C5—N1 1.326 (3) C12—C13 1.370 (3)
C5—H5 0.9300 C12—H12 0.9300
C6—C7 1.505 (3) C13—H13 0.9300
C6—H6A 0.9700 Cl1—Ni1 2.2487 (6)
C6—H6B 0.9700 Cl2—Ni1 2.2503 (6)
C7—C8 1.521 (3) Cl3—Ni1 2.2760 (7)
C7—H7A 0.9700 Cl4—Ni1 2.2198 (7)
C7—H7B 0.9700 N1—H1A 0.8600
C8—C9 1.502 (3) N2—H2A 0.8600
N1—C1—C2 120.2 (2) C9—C8—H8B 108.1
N1—C1—H1 119.9 C7—C8—H8B 108.1
C2—C1—H1 119.9 H8A—C8—H8B 107.3
C1—C2—C3 119.8 (2) C13—C9—C10 117.3 (2)
C1—C2—H2 120.1 C13—C9—C8 123.6 (2)
C3—C2—H2 120.1 C10—C9—C8 119.1 (2)
C4—C3—C2 117.6 (2) C11—C10—C9 120.9 (2)
C4—C3—C6 118.3 (2) C11—C10—H10 119.6
C2—C3—C6 124.0 (2) C9—C10—H10 119.6
C5—C4—C3 120.9 (2) N2—C11—C10 119.6 (2)
C5—C4—H4 119.6 N2—C11—H11 120.2
C3—C4—H4 119.6 C10—C11—H11 120.2
N1—C5—C4 119.6 (2) N2—C12—C13 119.8 (2)
N1—C5—H5 120.2 N2—C12—H12 120.1
C4—C5—H5 120.2 C13—C12—H12 120.1
C3—C6—C7 117.56 (19) C12—C13—C9 120.3 (2)
C3—C6—H6A 107.9 C12—C13—H13 119.9
C7—C6—H6A 107.9 C9—C13—H13 119.9
C3—C6—H6B 107.9 C5—N1—C1 121.9 (2)
C7—C6—H6B 107.9 C5—N1—H1A 119.1
H6A—C6—H6B 107.2 C1—N1—H1A 119.1
C6—C7—C8 110.12 (18) C12—N2—C11 122.0 (2)
C6—C7—H7A 109.6 C12—N2—H2A 119.0
C8—C7—H7A 109.6 C11—N2—H2A 119.0
C6—C7—H7B 109.6 Cl4—Ni1—Cl1 98.27 (2)
C8—C7—H7B 109.6 Cl4—Ni1—Cl2 142.34 (3)
H7A—C7—H7B 108.2 Cl1—Ni1—Cl2 96.59 (3)
C9—C8—C7 116.96 (19) Cl4—Ni1—Cl3 96.98 (3)
C9—C8—H8A 108.1 Cl1—Ni1—Cl3 134.16 (3)
C7—C8—H8A 108.1 Cl2—Ni1—Cl3 97.04 (3)
N1—C1—C2—C3 −0.1 (4) C7—C8—C9—C10 −178.6 (2)
C1—C2—C3—C4 1.8 (4) C13—C9—C10—C11 −2.5 (4)
C1—C2—C3—C6 −176.1 (2) C8—C9—C10—C11 178.0 (2)
C2—C3—C4—C5 −2.0 (4) C9—C10—C11—N2 0.8 (4)
C6—C3—C4—C5 176.0 (2) N2—C12—C13—C9 −0.7 (4)
C3—C4—C5—N1 0.5 (4) C10—C9—C13—C12 2.4 (4)
C4—C3—C6—C7 176.3 (2) C8—C9—C13—C12 −178.1 (2)
C2—C3—C6—C7 −5.9 (4) C4—C5—N1—C1 1.3 (4)
C3—C6—C7—C8 179.9 (2) C2—C1—N1—C5 −1.5 (4)
C6—C7—C8—C9 178.7 (2) C13—C12—N2—C11 −1.1 (4)
C7—C8—C9—C13 1.8 (3) C10—C11—N2—C12 1.0 (4)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
N1—H1A···Cl1 i 0.86 2.43 3.150 (2) 142
N2—H2A···Cl3 ii 0.86 2.25 3.114 (2) 178

Symmetry codes: (i) x+3/2, − y+1/2, z+1/2; (ii) − x−1/2, y+1/2, − z+1/2.

References

1  

Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.

2  

Kao, Y.-C. & Chen, J.-D. (2004). Struct. Chem. 15, 269–276.

3  

Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.

4  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
N1—H1 A⋯Cl1 i 0.86 2.43 3.150 (2) 142
N2—H2 A⋯Cl3 ii 0.86 2.25 3.114 (2) 178

Symmetry codes: (i) e-65-m1656-efi2.jpg ; (ii) e-65-m1656-efi3.jpg .