Redetermination of 1-benzyl-3-furoyl-1-phenyl­thio­urea

Estévez-Hernández, O. a * Corrêa, Rodrigo S. b Ellena, J. b Duque, J. a [a ] Laboratory of Molecular Engineering, Institute of Materials, University of Havana, Cuba [b ] Grupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil

Abstract

The title compound, C 19H 16N 2O 2S, was synthesized from furoyl isothio­cyanate and N-benzyl­aniline in dry acetone and the structure redetermined. The structure [Otazo-Sánchez et al. (2001 ). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218] has been re-determined in order to establish the intramolecular and intermolecular inter­actions. The thio­urea group is in the thio­amide form. The thio­urea group makes a dihedral angle of 29.2 (6)° with the furoyl group. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming one-dimensional chains along the a axis. An intra­molecular N—H⋯O hydrogen bond is also present.

Related literature

For general background, see: Aly et al. (2007 ), Koch (2001 ), Estévez-Hernández et al. (2006 ). For related structures, see: Pérez et al. (2008 ). For the synthesis, see: Otazo-Sánchez et al. (2001 ). e-65-0o648-scheme1.jpg

Experimental

Crystal data

  • C 19H 16N 2O 2S

  • M r = 336.41

  • Orthorhombic, e-65-0o648-efi5.jpg

  • a = 12.7737 (3) Å

  • b = 8.8047 (2) Å

  • c = 31.2345 (7) Å

  • V = 3512.90 (14) Å 3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm −1

  • T = 294 (2) K

  • 0.54 × 0.22 × 0.19 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965 ) T min = 0.92, T max = 0.971

  • 19732 measured reflections

  • 3536 independent reflections

  • 2565 reflections with I > 2σ( I)

  • R int = 0.058

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.041

  • wR( F 2) = 0.114

  • S = 1.03

  • 3536 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρ max = 0.12 e Å −3

  • Δρ min = −0.13 e Å −3

Data collection: COLLECT (Nonius, 2000 ); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 ); data reduction: DENZO (Otwinowski & Minor, 1997 ) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ) and Mercury (Bruno et al., 2002 ); software used to prepare material for publication: WinGX (Farrugia, 1999 ).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044085/bq2112sup1.cif

e-65-0o648-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044085/bq2112Isup2.hkl

e-65-0o648-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2112).

Acknowledgements

The authors acknowledge financial support from the Brazilian agency CNPq. OEH thanks CONACyT of Mexico for research grant No. 61541.

Appendices

supplementary crystallographic information

Comment

The importance of aroylthioureas is largely in heterocyclic syntheses and many of these substrates have interesting biological activities. Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007, Estévez-Hernández et al. , 2006). The structure of the title compound (I), Fig.1, has been redetermined and the result adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of better quality (present refinement: R: 0.0410 and wR: 0.1137; previous refinement: R: 0.1450 and wR: 0.2356). The main bond lengths and angles are within the ranges obtained for similar compounds (Koch et al., 2001; Pérez et al. , 2008). The C2—S1 and C1—O1 bonds show typical double-bond character. However, the C—N bond lengths, C1—N1, C2—N1, C2—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1—C2—S1—N2) makes dihedral angle of 29,2(6)° with the furan carbonyl (O1—O2—C1—C3—C6) group, whereas the C7—C12 benzene ring is inclined by 84,7(6)°. The crystal structure is stabilized principally by the intramolecular N1—H···O2 hydrogen bond (Fig.1 and Table 1). In the crystal structure symmetry related molecules are linked by two different C—H···O1 interactions (C8—H···O1, 3.2<D<3.6 Å and θ>110°) and (C6—H···O1, 3.2<D<3.6 Å and θ>150°) to form one-dimensional chains along the a-axis (Fig. 2 and Table 1).

Experimental

The title compound, (I), was synthesized according to a procedure described by Otazo-Sánchez et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with N-benzylaniline. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p. 127–128°C). Elemental analysis for C 19H 16N 2O 2S found: C 59.95, H 4.60, N 10.74, S 11.21%; calculated: C 60.00, H 4.62, N 10.76, S 11.31%.

Refinement

All H atoms were refined with U iso(H)=1.2 U eq(C/N).

Figures

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
Fig. 2.

View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x+1/2, -y+1/2, -z]

View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x+1/2, -y+1/2, -z]

Crystal data

C 19H 16N 2O 2S F(000) = 1408
M r = 336.41 D x = 1.272 Mg m 3
Orthorhombic, P b c a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 19732 reflections
a = 12.7737 (3) Å θ = 2.9–26.4°
b = 8.8047 (2) Å µ = 0.20 mm 1
c = 31.2345 (7) Å T = 294 K
V = 3512.90 (14) Å 3 Prism, yellow
Z = 8 0.54 × 0.22 × 0.19 mm

Data collection

Nonius KappaCCD diffractometer 2565 reflections with I > 2σ( I)
CCD rotation images, thick slices scans R int = 0.058
Absorption correction: gaussian (Coppens et al., 1965) θ max = 26.4°, θ min = 3.1°
T min = 0.92, T max = 0.971 h = −15→15
19732 measured reflections k = −11→8
3536 independent reflections l = −38→39

Refinement

Refinement on F 2 0 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[ F 2 > 2σ( F 2)] = 0.041 w = 1/[σ 2( F o 2) + (0.0583 P) 2 + 0.343 P] where P = ( F o 2 + 2 F c 2)/3
wR( F 2) = 0.114 (Δ/σ) max < 0.001
S = 1.03 Δρ max = 0.12 e Å 3
3536 reflections Δρ min = −0.13 e Å 3
281 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
C1 0.26117 (12) 0.19869 (17) 0.05040 (4) 0.0577 (4)
C2 0.26889 (12) 0.37199 (18) 0.11358 (4) 0.0577 (4)
C3 0.32563 (12) 0.1570 (2) 0.01356 (5) 0.0619 (4)
C4 0.31207 (19) 0.0530 (3) −0.01689 (6) 0.0842 (6)
C5 0.39938 (19) 0.0609 (3) −0.04428 (7) 0.0952 (7)
C6 0.46044 (18) 0.1672 (3) −0.02896 (6) 0.0861 (6)
C7 0.45449 (12) 0.39652 (19) 0.13227 (5) 0.0599 (4)
C8 0.51367 (15) 0.5088 (2) 0.11332 (6) 0.0723 (5)
C9 0.61918 (16) 0.4856 (3) 0.10720 (7) 0.0865 (6)
C10 0.66461 (18) 0.3518 (3) 0.11944 (7) 0.0909 (6)
C11 0.60580 (16) 0.2400 (3) 0.13808 (7) 0.0866 (6)
C12 0.50023 (15) 0.2623 (2) 0.14502 (6) 0.0747 (5)
C13 0.32176 (18) 0.5218 (2) 0.17699 (6) 0.0706 (4)
C14 0.34629 (12) 0.44677 (18) 0.21911 (5) 0.0615 (4)
C15 0.28076 (19) 0.3390 (3) 0.23609 (6) 0.0877 (6)
C16 0.3022 (3) 0.2697 (3) 0.27438 (8) 0.1152 (9)
C17 0.3882 (3) 0.3076 (3) 0.29671 (8) 0.1110 (9)
C18 0.4556 (2) 0.4131 (4) 0.28073 (8) 0.1023 (8)
C19 0.43495 (17) 0.4839 (3) 0.24164 (6) 0.0822 (5)
N1 0.30881 (11) 0.30009 (16) 0.07753 (4) 0.0607 (4)
N2 0.34480 (10) 0.42232 (15) 0.14007 (4) 0.0613 (3)
O1 0.17529 (9) 0.14370 (14) 0.05539 (4) 0.0732 (3)
O2 0.41816 (9) 0.23024 (15) 0.00713 (4) 0.0762 (3)
S1 0.14167 (3) 0.39752 (6) 0.121403 (14) 0.07098 (18)
H1 0.3720 (15) 0.319 (2) 0.0721 (6) 0.078 (6)*
H4 0.2628 (18) 0.001 (3) −0.0187 (6) 0.092 (7)*
H5 0.4127 (17) 0.003 (3) −0.0693 (7) 0.109 (7)*
H6 0.5238 (18) 0.211 (3) −0.0356 (7) 0.107 (7)*
H8 0.4814 (14) 0.597 (2) 0.1052 (5) 0.075 (5)*
H9 0.660 (2) 0.558 (3) 0.0925 (8) 0.120 (8)*
H10 0.734 (2) 0.335 (3) 0.1144 (8) 0.133 (9)*
H11 0.6356 (17) 0.143 (3) 0.1469 (7) 0.108 (7)*
H12 0.4597 (16) 0.188 (2) 0.1588 (6) 0.088 (6)*
H13A 0.3612 (15) 0.614 (2) 0.1742 (6) 0.081 (6)*
H13B 0.2478 (17) 0.544 (2) 0.1764 (5) 0.082 (5)*
H15 0.2202 (18) 0.315 (3) 0.2208 (7) 0.112 (8)*
H16 0.255 (3) 0.181 (4) 0.2858 (10) 0.180 (12)*
H17 0.404 (2) 0.260 (3) 0.3255 (9) 0.131 (8)*
H18 0.510 (2) 0.441 (3) 0.2933 (8) 0.130 (10)*
H19 0.4794 (17) 0.555 (3) 0.2293 (7) 0.103 (7)*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
C1 0.0526 (8) 0.0640 (9) 0.0563 (8) 0.0003 (7) −0.0034 (6) 0.0060 (7)
C2 0.0570 (9) 0.0602 (9) 0.0560 (8) 0.0011 (7) 0.0010 (6) 0.0069 (7)
C3 0.0551 (8) 0.0738 (10) 0.0569 (8) −0.0019 (8) −0.0019 (7) 0.0037 (8)
C4 0.0826 (14) 0.0989 (16) 0.0711 (11) −0.0108 (13) −0.0020 (10) −0.0153 (10)
C5 0.1014 (16) 0.1183 (18) 0.0659 (11) 0.0129 (14) 0.0064 (11) −0.0178 (12)
C6 0.0735 (12) 0.1153 (17) 0.0695 (11) 0.0085 (12) 0.0163 (10) 0.0017 (11)
C7 0.0562 (9) 0.0675 (10) 0.0559 (8) 0.0011 (8) −0.0065 (7) −0.0052 (7)
C8 0.0659 (11) 0.0739 (12) 0.0772 (11) 0.0012 (9) −0.0067 (8) 0.0021 (9)
C9 0.0644 (12) 0.0936 (15) 0.1013 (14) −0.0087 (11) 0.0005 (10) 0.0047 (12)
C10 0.0557 (11) 0.1095 (18) 0.1075 (15) 0.0044 (12) −0.0053 (10) −0.0069 (13)
C11 0.0733 (13) 0.0878 (15) 0.0988 (14) 0.0177 (11) −0.0119 (11) −0.0013 (12)
C12 0.0697 (11) 0.0729 (12) 0.0814 (11) 0.0032 (10) −0.0052 (9) 0.0025 (9)
C13 0.0747 (12) 0.0698 (12) 0.0674 (10) 0.0067 (10) −0.0003 (9) −0.0074 (8)
C14 0.0624 (9) 0.0622 (9) 0.0600 (8) 0.0016 (8) 0.0025 (7) −0.0115 (7)
C15 0.0932 (14) 0.1008 (15) 0.0691 (11) −0.0237 (12) 0.0073 (10) −0.0063 (10)
C16 0.157 (3) 0.115 (2) 0.0739 (13) −0.0213 (18) 0.0218 (16) 0.0066 (13)
C17 0.161 (3) 0.1054 (19) 0.0661 (13) 0.0328 (19) 0.0046 (15) 0.0021 (13)
C18 0.0984 (17) 0.126 (2) 0.0826 (14) 0.0257 (15) −0.0288 (13) −0.0254 (14)
C19 0.0754 (12) 0.0875 (13) 0.0838 (12) −0.0046 (11) −0.0083 (10) −0.0092 (11)
N1 0.0489 (7) 0.0748 (9) 0.0584 (7) −0.0047 (6) 0.0032 (6) −0.0032 (6)
N2 0.0592 (8) 0.0697 (8) 0.0552 (7) 0.0047 (6) −0.0013 (6) −0.0031 (6)
O1 0.0583 (6) 0.0822 (8) 0.0791 (7) −0.0113 (6) 0.0047 (5) −0.0040 (6)
O2 0.0632 (7) 0.0934 (9) 0.0719 (7) −0.0070 (6) 0.0097 (5) −0.0042 (6)
S1 0.0554 (3) 0.0834 (3) 0.0741 (3) 0.0051 (2) 0.00711 (18) −0.0001 (2)

Geometric parameters (Å, °)

C1—O1 1.2092 (18) C10—C11 1.368 (3)
C1—N1 1.3731 (19) C10—H10 0.91 (3)
C1—C3 1.462 (2) C11—C12 1.380 (3)
C2—N2 1.349 (2) C11—H11 0.97 (2)
C2—N1 1.389 (2) C12—H12 0.94 (2)
C2—S1 1.6586 (16) C13—N2 1.478 (2)
C3—C4 1.332 (3) C13—C14 1.505 (2)
C3—O2 1.361 (2) C13—H13A 0.96 (2)
C4—C5 1.407 (3) C13—H13B 0.97 (2)
C4—H4 0.78 (2) C14—C15 1.372 (3)
C5—C6 1.309 (3) C14—C19 1.373 (2)
C5—H5 0.95 (2) C15—C16 1.370 (3)
C6—O2 1.368 (2) C15—H15 0.93 (2)
C6—H6 0.92 (2) C16—C17 1.344 (4)
C7—C12 1.377 (2) C16—H16 1.05 (4)
C7—C8 1.378 (2) C17—C18 1.361 (4)
C7—N2 1.440 (2) C17—H17 1.01 (3)
C8—C9 1.376 (3) C18—C19 1.396 (3)
C8—H8 0.917 (19) C18—H18 0.84 (3)
C9—C10 1.368 (3) C19—H19 0.93 (2)
C9—H9 0.94 (3) N1—H1 0.841 (19)
O1—C1—N1 125.65 (14) C7—C12—H12 119.7 (13)
O1—C1—C3 120.79 (14) C11—C12—H12 120.8 (13)
N1—C1—C3 113.54 (13) N2—C13—C14 112.36 (14)
N2—C2—N1 112.52 (14) N2—C13—H13A 109.1 (11)
N2—C2—S1 124.70 (12) C14—C13—H13A 110.0 (11)
N1—C2—S1 122.74 (12) N2—C13—H13B 107.6 (11)
C4—C3—O2 109.47 (16) C14—C13—H13B 108.1 (10)
C4—C3—C1 131.42 (17) H13A—C13—H13B 109.7 (17)
O2—C3—C1 119.10 (14) C15—C14—C19 118.04 (19)
C3—C4—C5 107.3 (2) C15—C14—C13 120.96 (17)
C3—C4—H4 123.9 (16) C19—C14—C13 121.00 (18)
C5—C4—H4 128.8 (16) C16—C15—C14 121.6 (2)
C6—C5—C4 106.6 (2) C16—C15—H15 120.8 (15)
C6—C5—H5 125.4 (14) C14—C15—H15 117.6 (15)
C4—C5—H5 128.0 (14) C17—C16—C15 120.4 (3)
C5—C6—O2 110.87 (19) C17—C16—H16 118.4 (18)
C5—C6—H6 137.7 (14) C15—C16—H16 121.1 (19)
O2—C6—H6 111.4 (14) C16—C17—C18 119.8 (2)
C12—C7—C8 120.46 (17) C16—C17—H17 121.5 (15)
C12—C7—N2 119.95 (15) C18—C17—H17 118.7 (15)
C8—C7—N2 119.55 (15) C17—C18—C19 120.4 (2)
C9—C8—C7 119.4 (2) C17—C18—H18 123.7 (19)
C9—C8—H8 121.8 (12) C19—C18—H18 115.9 (19)
C7—C8—H8 118.8 (11) C14—C19—C18 119.8 (2)
C10—C9—C8 120.3 (2) C14—C19—H19 117.0 (13)
C10—C9—H9 119.0 (15) C18—C19—H19 123.2 (13)
C8—C9—H9 120.6 (15) C1—N1—C2 129.35 (14)
C11—C10—C9 120.4 (2) C1—N1—H1 115.3 (12)
C11—C10—H10 119.4 (17) C2—N1—H1 115.3 (12)
C9—C10—H10 120.2 (17) C2—N2—C7 122.93 (13)
C10—C11—C12 120.0 (2) C2—N2—C13 122.01 (14)
C10—C11—H11 122.4 (13) C7—N2—C13 114.78 (14)
C12—C11—H11 117.6 (13) C3—O2—C6 105.79 (15)
C7—C12—C11 119.5 (2)
O1—C1—C3—C4 −6.5 (3) C16—C17—C18—C19 1.1 (4)
N1—C1—C3—C4 172.34 (19) C15—C14—C19—C18 −0.4 (3)
O1—C1—C3—O2 174.73 (14) C13—C14—C19—C18 179.69 (18)
N1—C1—C3—O2 −6.5 (2) C17—C18—C19—C14 −0.1 (3)
O2—C3—C4—C5 −0.6 (2) O1—C1—N1—C2 −6.2 (3)
C1—C3—C4—C5 −179.47 (18) C3—C1—N1—C2 175.04 (15)
C3—C4—C5—C6 0.4 (3) N2—C2—N1—C1 159.13 (15)
C4—C5—C6—O2 −0.1 (3) S1—C2—N1—C1 −23.1 (2)
C12—C7—C8—C9 0.0 (3) N1—C2—N2—C7 −2.9 (2)
N2—C7—C8—C9 177.88 (16) S1—C2—N2—C7 179.43 (12)
C7—C8—C9—C10 0.6 (3) N1—C2—N2—C13 170.71 (14)
C8—C9—C10—C11 −0.3 (3) S1—C2—N2—C13 −7.0 (2)
C9—C10—C11—C12 −0.6 (3) C12—C7—N2—C2 −84.39 (19)
C8—C7—C12—C11 −1.0 (3) C8—C7—N2—C2 97.73 (19)
N2—C7—C12—C11 −178.84 (16) C12—C7—N2—C13 101.60 (18)
C10—C11—C12—C7 1.3 (3) C8—C7—N2—C13 −76.27 (18)
N2—C13—C14—C15 −76.7 (2) C14—C13—N2—C2 115.66 (17)
N2—C13—C14—C19 103.2 (2) C14—C13—N2—C7 −70.3 (2)
C19—C14—C15—C16 0.0 (3) C4—C3—O2—C6 0.5 (2)
C13—C14—C15—C16 179.9 (2) C1—C3—O2—C6 179.59 (15)
C14—C15—C16—C17 0.9 (4) C5—C6—O2—C3 −0.3 (2)
C15—C16—C17—C18 −1.4 (4)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
N1—H1···O2 0.84 (2) 2.25 (2) 2.677 (2) 111 (2)
C6—H6···O1 i 0.92 (2) 2.40 (2) 3.315 (3) 172 (2)
C8—H8···O1 ii 0.92 (2) 2.57 (2) 3.242 (2) 131 (2)

Symmetry codes: (i) x+1/2, − y+1/2, − z; (ii) − x+1/2, y+1/2, z.

References

1  

Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.

2  

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B 58, 389–397.

3  

Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.

4  

Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta Part A, 64, 961–971.

5  

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

6  

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

7  

Koch, K. R. (2001). Coord. Chem. Rev. 216217, 473–488.

8  

Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.

9  

Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.

10  

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

11  

Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E 64, o513.

12  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
N1—H1⋯O2 0.84 (2) 2.25 (2) 2.677 (2) 111 (2)
C6—H6⋯O1 i 0.92 (2) 2.40 (2) 3.315 (3) 172 (2)
C8—H8⋯O1 ii 0.92 (2) 2.57 (2) 3.242 (2) 131 (2)

Symmetry codes: (i) e-65-0o648-efi6.jpg ; (ii) e-65-0o648-efi7.jpg .