Poly[[[diisothio­cyanato­cobalt(II)]-bis­[μ-4- tert-butyl-2,6-bis­(1,2,4-triazol-1-ylmeth­yl)phenol]] dimethyl­formamide disolvate dihydrate]

Chu, Zhao-lian a * [a ] Institute of Molecular Engineering & Applied Chemistry, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, People’s Republic of China

Abstract

In the title compound, {[Co(NCS) 2(C 16H 20N 6O) 2]·2C 3H 7NO·2H 2O} n , each Co II ion located on an inversion center is six-coordinated by four equatorial N atoms from four different 4- tert-butyl-2,6-bis­(1,2,4-triazol-1-ylmeth­yl)phenol ( L) ligands, and by two N atoms from two axial thio­cyanate anions [Co—N = 2.104 (3)–2.144 (3) Å]. The metal centres are connected via the bidentate L ligands into two-dimensional polymeric layers parallel to bc plane. The dimethyl­formamide and solvent water mol­ecules participate in inter­molecular O—H⋯O and O—H⋯S hydrogen bonds, which consolidate the crystal packing.

Related literature

For related structures, see: Chu et al. (2007 , 2008 ); Ma et al. (2003 ); Zhu et al. (2004 , 2007 ). For details of the synthesis, see Yan et al. (1994 ). e-65-0m288-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS) 2(C 16H 20N 6O) 2]·2C 3H 7NO·2H 2O

  • M r = 982.07

  • Monoclinic, e-65-0m288-efi5.jpg

  • a = 12.561 (4) Å

  • b = 20.660 (6) Å

  • c = 10.571 (3) Å

  • β = 112.992 (5)°

  • V = 2525.2 (12) Å 3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm −1

  • T = 291 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan ( SADABS; Bruker, 2000 ) T min = 0.869, T max = 0.910

  • 13505 measured reflections

  • 4950 independent reflections

  • 2902 reflections with I > 2σ( I)

  • R int = 0.057

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.055

  • wR( F 2) = 0.123

  • S = 0.90

  • 4950 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρ max = 0.45 e Å −3

  • Δρ min = −0.28 e Å −3

Data collection: SMART (Bruker, 2000 ); cell refinement: SAINT (Bruker, 2000 ); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: SHELXTL (Sheldrick, 2008 ) and DIAMOND (Brandenburg, 1998 ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809005121/cv2519sup1.cif

e-65-0m288-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809005121/cv2519Isup2.hkl

e-65-0m288-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2519).

Acknowledgements

The author acknowledges Anhui University of Technology for supporting this work.

Appendices

supplementary crystallographic information

Comment

Ligand 2,6-bis(1,2,4-triazol-1-ylmethyl)-4- tert-butyl-phenol (bttp) has been used to generate various metal-organic architectures with different transitional metal ions due to its polydentate character and bridging ability (Chu et al., 2007, 2008; Ma et al., 2003; Zhu et al., 2004, 2007). As a further study of such complexes, the title Co II complex is reported in this paper.

Each Co II atom exhibits a slightly distorted octahedral environment with four nitrogen atoms from the triazole groups of four bttp ligands in the equatorial plane, and two nitrogen atoms from two thiocyanate ligands at the axial positions (Fig. 1). Each ligand adopts a cis conformation in which two triazole groups are on the same direction of the central phenyl ring. The dihedral angles between the phenyl ring and the two triazole rings are 97.8 (3) ° and 88.8 (3) °, respectively. The two triazole rings are inclined to one another, with a dihedral angle of 65.3 (3) °. Each bttp serves as a bidentate bridging ligand via two exodentate nitrogen atoms at the 4-position of the triazole rings while the nitrogen atoms at 1,2-positions remain uncoordinated. In this way four metal atoms and four bttp ligands form a 48-membered [ M 4 L 4] metallocyclic ring, which is further assembled into a two-dimensional network via Co–N coordination bonds (Fig. 2). The Co···Co distance linked by the bridged bttp ligand is 11.604 (1) Å. The water oxygen atom is uncoordinated, and contributes to the formation of O–H···O and O–H···S hydrogen-bonding interactions with phenol group and DMF molecule (Table 1).

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. Ligand bttp was prepared via a one-step Mannich reaction as a white powder in 57% yield (Yan et al., 1994). For the synthesis of title compoud, a solution of bttp (0.1 mmol), Co(NO 3) 2.6H 2O (0.1 mmol) and NH 4SCN (0.25 mmol) in 30 ml e thanol was refluxed for 2 h, and then cooled to room temperature and filtered. The collected solid was dissolved in 1 ml DMF, and 20 ml e thanol was added to this solution. The mixture was left to stand at room temperature for two weeks and pink crystalline products were obtained (30.5 mg, 62%). Anal. Calcd. for C 40H 58CoN 16O 6S 2: C, 48.92; H, 5.95; N, 22.82. Found: C, 48.88; H, 5.98; N, 22.72.

Refinement

All H atoms were geometrically positioned (C–H 0.93–0.97 Å, O–H 0.82–0.85 Å), and refined as riding, with U iso(H)=1.2-1.5 U eq of the parent atom.

Figures

Fig. 1.

A portion of the crystal structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 1, y - 1/2, -z + 3/2; (C) x, -y + 3/2, z - 1/2].

A portion of the crystal structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 1, y - 1/2, -z + 3/2; (C) x, -y + 3/2, z - 1/2].

Crystal data

[Co(NCS) 2(C 16H 20N 6O) 2]·2C 3H 7NO·2H 2O F(000) = 1034
M r = 982.07 D x = 1.292 Mg m 3
Monoclinic, P2 1/ c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2950 reflections
a = 12.561 (4) Å θ = 2.2–26.3°
b = 20.660 (6) Å µ = 0.48 mm 1
c = 10.571 (3) Å T = 291 K
β = 112.992 (5)° Block, pink
V = 2525.2 (12) Å 3 0.30 × 0.30 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 4950 independent reflections
Radiation source: fine-focus sealed tube 2902 reflections with I > 2σ( I)
graphite R int = 0.057
φ and ω scans θ max = 26.0°, θ min = 2.0°
Absorption correction: multi-scan ( SADABS; Bruker, 2000) h = −15→9
T min = 0.869, T max = 0.910 k = −22→25
13505 measured reflections l = −12→13

Refinement

Refinement on F 2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR( F 2) = 0.123 H-atom parameters constrained
S = 0.90 w = 1/[σ 2( F o 2) + (0.0486 P) 2] where P = ( F o 2 + 2 F c 2)/3
4950 reflections (Δ/σ) max = 0.001
301 parameters Δρ max = 0.45 e Å 3
0 restraints Δρ min = −0.28 e Å 3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Co1 0.5000 0.5000 0.5000 0.03695 (19)
C1 0.5771 (3) 0.86800 (14) 0.5064 (3) 0.0393 (8)
C2 0.6792 (3) 0.90337 (13) 0.5400 (3) 0.0404 (8)
C3 0.7690 (3) 0.87839 (14) 0.5126 (3) 0.0433 (8)
H3 0.8360 0.9029 0.5346 0.052*
C4 0.7636 (3) 0.81724 (14) 0.4528 (3) 0.0420 (8)
C5 0.6623 (3) 0.78350 (14) 0.4230 (3) 0.0404 (8)
H5 0.6563 0.7426 0.3841 0.048*
C6 0.5691 (3) 0.80680 (13) 0.4473 (3) 0.0371 (8)
C7 0.8633 (3) 0.79381 (16) 0.4164 (4) 0.0550 (10)
C8 0.9756 (3) 0.7951 (2) 0.5444 (5) 0.0955 (15)
H8A 1.0379 0.7796 0.5216 0.143*
H8B 0.9678 0.7678 0.6138 0.143*
H8C 0.9916 0.8386 0.5783 0.143*
C9 0.8743 (5) 0.8385 (2) 0.3075 (5) 0.1115 (19)
H9A 0.8033 0.8381 0.2275 0.167*
H9B 0.9363 0.8239 0.2832 0.167*
H9C 0.8902 0.8818 0.3432 0.167*
C10 0.8440 (4) 0.72489 (18) 0.3605 (5) 0.0915 (15)
H10A 0.7729 0.7229 0.2806 0.137*
H10B 0.8397 0.6960 0.4295 0.137*
H10C 0.9070 0.7123 0.3360 0.137*
C11 0.6889 (3) 0.97044 (14) 0.6015 (3) 0.0478 (9)
H11A 0.7630 0.9889 0.6125 0.057*
H11B 0.6290 0.9977 0.5379 0.057*
C12 0.5946 (3) 0.99424 (14) 0.7654 (3) 0.0455 (8)
H12 0.5296 1.0151 0.7034 0.055*
C13 0.7154 (3) 0.95306 (17) 0.9391 (4) 0.0597 (10)
H13 0.7526 0.9391 1.0294 0.072*
C14 0.4596 (3) 0.76755 (13) 0.4002 (3) 0.0447 (9)
H14A 0.4007 0.7913 0.4189 0.054*
H14B 0.4318 0.7607 0.3018 0.054*
C15 0.4614 (3) 0.64600 (13) 0.4173 (3) 0.0421 (8)
H15 0.4319 0.6366 0.3239 0.050*
C16 0.5281 (3) 0.63924 (14) 0.6298 (3) 0.0507 (9)
H16 0.5557 0.6217 0.7178 0.061*
C17 0.2724 (3) 0.51848 (14) 0.2245 (4) 0.0446 (9)
C18 0.1450 (9) 0.6297 (5) 0.6463 (9) 0.298 (8)
H18A 0.2127 0.6063 0.7034 0.448*
H18B 0.0774 0.6090 0.6486 0.448*
H18C 0.1493 0.6733 0.6795 0.448*
C19 0.0711 (6) 0.5834 (3) 0.4258 (8) 0.178 (3)
H19A −0.0069 0.5866 0.4200 0.267*
H19B 0.1015 0.5414 0.4597 0.267*
H19C 0.0720 0.5897 0.3362 0.267*
C20 0.1849 (6) 0.6730 (4) 0.4695 (12) 0.223 (6)
H20 0.1732 0.6685 0.3775 0.267*
N1 0.6785 (2) 0.97134 (11) 0.7339 (3) 0.0424 (7)
N2 0.7593 (3) 0.94366 (14) 0.8470 (3) 0.0633 (9)
N3 0.6134 (2) 0.98416 (11) 0.8952 (3) 0.0421 (7)
N4 0.4785 (2) 0.70493 (10) 0.4699 (2) 0.0381 (7)
N5 0.5213 (3) 0.70182 (11) 0.6081 (3) 0.0537 (8)
N6 0.4925 (2) 0.60231 (11) 0.5167 (3) 0.0419 (7)
N7 0.3582 (3) 0.50307 (12) 0.3096 (3) 0.0498 (7)
N8 0.1387 (4) 0.6307 (2) 0.5147 (7) 0.1162 (19)
O1 0.4893 (2) 0.89753 (10) 0.5304 (3) 0.0546 (6)
H1 0.4390 0.8709 0.5237 0.082*
O2 0.3105 (2) 0.83963 (13) 0.5642 (3) 0.1002 (11)
H2A 0.2885 0.8004 0.5513 0.120*
H2B 0.2559 0.8631 0.5668 0.150*
O3 0.2404 (4) 0.7173 (2) 0.5249 (8) 0.239 (4)
S1 0.14960 (9) 0.54051 (5) 0.10273 (12) 0.0765 (4)

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Co1 0.0484 (4) 0.0262 (3) 0.0367 (4) −0.0040 (3) 0.0171 (3) 0.0003 (3)
C1 0.051 (2) 0.0312 (17) 0.0407 (19) 0.0049 (16) 0.0238 (17) 0.0051 (14)
C2 0.055 (2) 0.0296 (16) 0.043 (2) −0.0029 (16) 0.0258 (18) −0.0028 (14)
C3 0.049 (2) 0.0362 (17) 0.049 (2) −0.0073 (16) 0.0249 (18) −0.0029 (15)
C4 0.056 (2) 0.0307 (17) 0.044 (2) 0.0001 (16) 0.0247 (18) 0.0025 (14)
C5 0.055 (2) 0.0258 (16) 0.041 (2) 0.0040 (16) 0.0191 (17) −0.0010 (14)
C6 0.049 (2) 0.0241 (15) 0.0377 (18) 0.0004 (15) 0.0166 (16) 0.0046 (13)
C7 0.064 (3) 0.042 (2) 0.073 (3) 0.0009 (18) 0.041 (2) −0.0084 (18)
C8 0.066 (3) 0.093 (3) 0.134 (4) 0.004 (3) 0.046 (3) −0.024 (3)
C9 0.165 (5) 0.082 (3) 0.156 (5) 0.028 (3) 0.137 (4) 0.023 (3)
C10 0.092 (3) 0.060 (3) 0.146 (4) 0.000 (2) 0.072 (3) −0.033 (3)
C11 0.062 (2) 0.0335 (17) 0.060 (2) −0.0091 (17) 0.037 (2) −0.0046 (16)
C12 0.054 (2) 0.0373 (18) 0.048 (2) 0.0070 (17) 0.0233 (18) −0.0025 (16)
C13 0.061 (3) 0.071 (3) 0.045 (2) 0.012 (2) 0.019 (2) 0.0028 (19)
C14 0.053 (2) 0.0302 (17) 0.047 (2) 0.0053 (15) 0.0148 (18) 0.0054 (14)
C15 0.054 (2) 0.0330 (17) 0.0365 (19) −0.0066 (16) 0.0143 (17) −0.0067 (14)
C16 0.081 (3) 0.0337 (18) 0.039 (2) −0.0038 (18) 0.0247 (19) 0.0002 (15)
C17 0.057 (2) 0.0317 (18) 0.050 (2) −0.0062 (16) 0.027 (2) −0.0054 (15)
C18 0.396 (17) 0.376 (16) 0.121 (7) 0.258 (14) 0.099 (9) 0.043 (8)
C19 0.159 (7) 0.117 (5) 0.234 (9) 0.029 (5) 0.051 (7) 0.011 (6)
C20 0.093 (6) 0.113 (6) 0.475 (19) 0.010 (5) 0.125 (9) 0.039 (9)
N1 0.0509 (19) 0.0322 (14) 0.0500 (18) −0.0032 (13) 0.0263 (16) −0.0068 (13)
N2 0.058 (2) 0.075 (2) 0.059 (2) 0.0159 (17) 0.0251 (18) −0.0012 (17)
N3 0.0483 (18) 0.0381 (15) 0.0432 (18) 0.0033 (13) 0.0215 (14) −0.0014 (12)
N4 0.0478 (18) 0.0279 (13) 0.0381 (17) −0.0048 (12) 0.0163 (14) −0.0010 (11)
N5 0.089 (2) 0.0319 (15) 0.0385 (17) −0.0037 (15) 0.0229 (16) −0.0047 (12)
N6 0.0578 (18) 0.0286 (13) 0.0404 (16) −0.0038 (13) 0.0202 (14) 0.0003 (12)
N7 0.056 (2) 0.0466 (16) 0.0410 (17) −0.0040 (16) 0.0127 (15) 0.0024 (14)
N8 0.065 (3) 0.065 (3) 0.192 (6) 0.003 (2) 0.022 (3) −0.008 (3)
O1 0.0581 (16) 0.0363 (12) 0.0824 (18) −0.0020 (12) 0.0416 (15) −0.0086 (12)
O2 0.087 (2) 0.082 (2) 0.157 (3) −0.0222 (17) 0.075 (2) −0.0334 (19)
O3 0.106 (4) 0.096 (3) 0.512 (10) −0.033 (3) 0.118 (5) −0.063 (5)
S1 0.0555 (7) 0.0812 (7) 0.0776 (8) 0.0190 (6) 0.0094 (6) −0.0002 (6)

Geometric parameters (Å, °)

Co1—N7 i 2.104 (3) C12—N3 1.314 (4)
Co1—N7 2.104 (3) C12—H12 0.9300
Co1—N6 2.126 (2) C13—N2 1.306 (4)
Co1—N6 i 2.126 (2) C13—N3 1.344 (4)
Co1—N3 ii 2.144 (3) C13—H13 0.9300
Co1—N3 iii 2.144 (3) C14—N4 1.461 (3)
C1—O1 1.368 (4) C14—H14A 0.9700
C1—C2 1.396 (4) C14—H14B 0.9700
C1—C6 1.397 (4) C15—N4 1.321 (3)
C2—C3 1.370 (4) C15—N6 1.323 (4)
C2—C11 1.515 (4) C15—H15 0.9300
C3—C4 1.403 (4) C16—N5 1.310 (3)
C3—H3 0.9300 C16—N6 1.339 (4)
C4—C5 1.375 (4) C16—H16 0.9300
C4—C7 1.526 (5) C17—N7 1.147 (4)
C5—C6 1.380 (4) C17—S1 1.641 (4)
C5—H5 0.9300 C18—N8 1.361 (8)
C6—C14 1.504 (4) C18—H18A 0.9600
C7—C9 1.523 (5) C18—H18B 0.9600
C7—C10 1.525 (5) C18—H18C 0.9600
C7—C8 1.526 (5) C19—N8 1.391 (7)
C8—H8A 0.9600 C19—H19A 0.9600
C8—H8B 0.9600 C19—H19B 0.9600
C8—H8C 0.9600 C19—H19C 0.9600
C9—H9A 0.9600 C20—O3 1.161 (9)
C9—H9B 0.9600 C20—N8 1.243 (8)
C9—H9C 0.9600 C20—H20 0.9300
C10—H10A 0.9600 N1—N2 1.356 (4)
C10—H10B 0.9600 N3—Co1 iv 2.144 (3)
C10—H10C 0.9600 N4—N5 1.347 (3)
C11—N1 1.456 (4) O1—H1 0.8200
C11—H11A 0.9700 O2—H2A 0.8500
C11—H11B 0.9700 O2—H2B 0.8501
C12—N1 1.311 (4)
N7 i—Co1—N7 180.0 C2—C11—H11A 108.8
N7 i—Co1—N6 89.94 (10) N1—C11—H11B 108.8
N7—Co1—N6 90.06 (10) C2—C11—H11B 108.8
N7 i—Co1—N6 i 90.06 (10) H11A—C11—H11B 107.7
N7—Co1—N6 i 89.94 (10) N1—C12—N3 111.9 (3)
N6—Co1—N6 i 180.000 (1) N1—C12—H12 124.0
N7 i—Co1—N3 ii 89.21 (11) N3—C12—H12 124.0
N7—Co1—N3 ii 90.79 (11) N2—C13—N3 115.9 (3)
N6—Co1—N3 ii 92.79 (9) N2—C13—H13 122.0
N6 i—Co1—N3 ii 87.21 (9) N3—C13—H13 122.0
N7 i—Co1—N3 iii 90.79 (11) N4—C14—C6 111.3 (2)
N7—Co1—N3 iii 89.21 (11) N4—C14—H14A 109.4
N6—Co1—N3 iii 87.21 (9) C6—C14—H14A 109.4
N6 i—Co1—N3 iii 92.79 (9) N4—C14—H14B 109.4
N3 ii—Co1—N3 iii 180.0 C6—C14—H14B 109.4
O1—C1—C2 116.5 (3) H14A—C14—H14B 108.0
O1—C1—C6 124.4 (3) N4—C15—N6 110.2 (3)
C2—C1—C6 119.1 (3) N4—C15—H15 124.9
C3—C2—C1 120.0 (3) N6—C15—H15 124.9
C3—C2—C11 120.0 (3) N5—C16—N6 115.4 (3)
C1—C2—C11 120.0 (3) N5—C16—H16 122.3
C2—C3—C4 122.4 (3) N6—C16—H16 122.3
C2—C3—H3 118.8 N7—C17—S1 180.0 (4)
C4—C3—H3 118.8 N8—C18—H18A 109.5
C5—C4—C3 116.0 (3) N8—C18—H18B 109.5
C5—C4—C7 124.0 (3) H18A—C18—H18B 109.5
C3—C4—C7 119.9 (3) N8—C18—H18C 109.5
C4—C5—C6 123.8 (3) H18A—C18—H18C 109.5
C4—C5—H5 118.1 H18B—C18—H18C 109.5
C6—C5—H5 118.1 N8—C19—H19A 109.5
C5—C6—C1 118.8 (3) N8—C19—H19B 109.5
C5—C6—C14 118.9 (3) H19A—C19—H19B 109.5
C1—C6—C14 122.2 (3) N8—C19—H19C 109.5
C9—C7—C10 108.7 (3) H19A—C19—H19C 109.5
C9—C7—C4 108.9 (3) H19B—C19—H19C 109.5
C10—C7—C4 111.8 (3) O3—C20—N8 129.7 (12)
C9—C7—C8 109.6 (4) O3—C20—H20 115.1
C10—C7—C8 108.2 (3) N8—C20—H20 115.1
C4—C7—C8 109.7 (3) C12—N1—N2 109.1 (3)
C7—C8—H8A 109.5 C12—N1—C11 129.2 (3)
C7—C8—H8B 109.5 N2—N1—C11 121.7 (3)
H8A—C8—H8B 109.5 C13—N2—N1 101.9 (3)
C7—C8—H8C 109.5 C12—N3—C13 101.2 (3)
H8A—C8—H8C 109.5 C12—N3—Co1 iv 129.1 (2)
H8B—C8—H8C 109.5 C13—N3—Co1 iv 129.2 (2)
C7—C9—H9A 109.5 C15—N4—N5 110.1 (2)
C7—C9—H9B 109.5 C15—N4—C14 129.5 (3)
H9A—C9—H9B 109.5 N5—N4—C14 120.4 (2)
C7—C9—H9C 109.5 C16—N5—N4 102.0 (2)
H9A—C9—H9C 109.5 C15—N6—C16 102.3 (2)
H9B—C9—H9C 109.5 C15—N6—Co1 128.4 (2)
C7—C10—H10A 109.5 C16—N6—Co1 129.1 (2)
C7—C10—H10B 109.5 C17—N7—Co1 160.7 (3)
H10A—C10—H10B 109.5 C20—N8—C18 123.5 (8)
C7—C10—H10C 109.5 C20—N8—C19 119.1 (9)
H10A—C10—H10C 109.5 C18—N8—C19 117.2 (8)
H10B—C10—H10C 109.5 C1—O1—H1 109.5
N1—C11—C2 113.7 (3) H2A—O2—H2B 109.5
N1—C11—H11A 108.8

Symmetry codes: (i) − x+1, − y+1, − z+1; (ii) − x+1, y−1/2, − z+3/2; (iii) x, − y+3/2, z−1/2; (iv) − x+1, y+1/2, − z+3/2.

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
O1—H1···O2 0.82 1.94 2.689 (4) 152
O2—H2A···O3 0.85 1.81 2.655 (5) 179
O2—H2B···S1 v 0.85 2.51 3.321 (3) 161

Symmetry codes: (v) x, − y+3/2, z+1/2.

References

1  

Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.

2  

Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.

3  

Chu, Z.-L., Huang, W., Zhu, H.-B. & Gou, S.-H. (2008). J. Mol. Struct. 874, 1–13.

4  

Chu, Z.-L., Xu, G., Huang, W. & Gou, S.-H. (2007). Acta Cryst. E 63, m2155–m2156.

5  

Ma, Y.-L., Huang, W., Yao, J.-C., Li, B., Gou, S.-H. & Fun, H.-K. (2003). J. Mol. Struct. 658, 51–58.

6  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

7  

Yan, J.-M., Zhang, Z.-J., Yuan, D.-Q., Xie, R.-G. & Zhao, H.-M. (1994). Synth. Commun. 24, 47–52.

8  

Zhu, H.-B., Chu, Z.-L., Hu, D.-H., Huang, W. & Gou, S.-H. (2007). Inorg. Chem. Commun. 10, 362–366.

9  

Zhu, H.-B., Huang, C.-H., Huang, W. & Gou, S.-H. (2004). Inorg. Chem. Commun. 7, 1095–1099.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
O1—H1⋯O2 0.82 1.94 2.689 (4) 152
O2—H2 A⋯O3 0.85 1.81 2.655 (5) 179
O2—H2 B⋯S1 i 0.85 2.51 3.321 (3) 161

Symmetry code: (i) e-65-0m288-efi6.jpg .