1-(8-Bromo-2-methyl-4-thioxo-3,4,5,6-tetra­hydro-2 H-2,6-methano-1,3-benzoxazocin-11-yl)ethanone

Palamarchuk, G. V. a * Borisov, O. V. b Kovalenko, S. S. b Chernykh, V. P. b Kovalenko, S. M. b Baumer, V. N. a Shishkin, O. V. a [a ] STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine [b ] Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Blyukhera Avenue, Kharkiv 61002, Ukraine

Abstract

In the title compound, C 14H 14BrNO 2S, there are two similar non-equivalent mol­ecules in the asymmetric unit, displaying three chiral centres each. In the crystal structure, they are linked by inter­molecular N—H⋯O hydrogen bonds to form infinite chains, which are in turn connected by weak Br⋯H and S⋯H inter­actions.

Related literature

For related literature on the applications of thio­phene derivatives, see: Zaragoza Dorwald (2000 ); Kovalenko & Victorova (2005 ). For analogous conformations, see: Bilokin et al. (1988 ); Raev et al. (2004 ); Biala et al. (2002 ); Konovalova et al. (2007 ); O’Callaghan et al. (1997 ); Zefirov & Zorky (1995 ). e-65-0o461-scheme1.jpg

Experimental

Crystal data

  • C 14H 14BrNO 2S

  • M r = 340.23

  • Triclinic, e-65-0o461-efi1.jpg

  • a = 8.213 (5) Å

  • b = 11.625 (7) Å

  • c = 15.156 (10) Å

  • α = 98.67 (5)°

  • β = 99.09 (5)°

  • γ = 101.81 (5)°

  • V = 1373.1 (15) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.14 mm −1

  • T = 293 (2) K

  • 0.6 × 0.1 × 0.05 mm

Data collection

  • Siemens P3/PC diffractometer

  • Absorption correction: integration ( XPREP; Siemens, 1991 ) T min = 0.611, T max = 0.855

  • 7869 measured reflections

  • 4773 independent reflections

  • 3383 reflections with I > 2/s( I)

  • R int = 0.012

  • 2 standard reflections every 98 reflections intensity decay: 1%

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.052

  • wR( F 2) = 0.118

  • S = 1.03

  • 4773 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρ max = 0.37 e Å −3

  • Δρ min = −0.43 e Å −3

Data collection: P3 (Siemens, 1991 ); cell refinement: P3; data reduction: XDISK and XPREP (Siemens, 1991 ); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: XP in SHELXTL (Sheldrick, 2008 ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900347X/bg2221sup1.cif

e-65-0o461-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900347X/bg2221Isup2.hkl

e-65-0o461-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2221).

Appendices

supplementary crystallographic information

Comment

The fragment of thiophene is a very important pharmacophore part of many biologically active compounds. Thiophene derivatives are used as antitussives (Zaragoza Dorwald, 2000; Kovalenko & Victorova, 2005), antibiotics, anaesthetics, antiparasitics, resolvents, anthelmintic drugs, anticholinergic drugs, antiulcer agents, antihistamines. Investigation of the molecular structure of these compounds may provide useful information for understanding the mechanism of their biological activity. In this paper we report the molecular and crystal structure of the 2-aroyl-3-amino-4-arylsulfonyl-5-arylamino-thiophene. There are two molecules in the asymmetric unit (labelled A and B in Fig. 1), with a similar distribution of chiral centers (C1, C9 and C13). Both molecules have similar geometrical characteristics: the piperidine-2-tione and tetrahydropyran rings adopt a half-chair conformation; deviations of the C1 and C13 atoms of the tetrahydropyrimidine ring from the mean-square planes of the remaining atoms in the ring are -0.46 (1) Å, 0.44 (1) Å and 0.37 (1) Å, -0.51 (1) Å in molecules A and B, respectively. Deviations of the C9 and C13 atoms of the tetrahydropyrane from the mean-square planes of the remaining atoms in the rings are -0.36 (1) Å, 0.44 (1) Å, in both molecules. The two rings are fused in such way that the C16 methyl group and the H atom at the C1 have equatorial orientation (the C7—C8—C9—C16 and C7—C2—C1—H1A torsion angles being -177.2 (3)° and -140.7 (3)° (molecule A) and -175.2 (3)° and -140.0 (3)° (molecule B). The same type of ring fusion have been observed in related compounds (Konovalova et al., 2007; Raev et al. , 2004; Bilokin et al., 1988; O'Callaghan et al. , 1997; Biala et al., 2002). The C13—C14 bond has an equatorial orientation with regard to the piperidine-2-tione ring (the N10—C9—C13—C14 torsion angle being -176.6 (3)° and -179.8 (3)° (A, B respectively). The acetyl group adopts an orthogonal arrangement relative to the C9—C13 bond (the C9—C13—C14—O14 torsion angle being 92.4 (4)°, -89.8 (4)° (A, B respectively). The main H-bonding interactions are presented in Table 1. Molecules pack as infinite chains of alternating A and B molecules, due to intrachain N—H···O and weak C—H···Br interactions. Neighbouring chains in turn are connected by weak C—H···.S interactions as well as by stacking interactions between phenyl rings with an interplanar distance of 3.37 (1) Å.

Experimental

The title compound was obtained by one-pot synthesis, starting from a mixture of 1 mmol 6-bromocoumarine-3-thioamide and 1.2 mmol of 2,4-pentanedione in 5 ml of methanol containing catalytic amounts of piperidine, which was refluxed for 5 min. Then it was cooled to 500 C and 2 mmol of potassium alkali was added. The reaction mixture was stirred at 500 C for 6 h (monitored by TLC). Then it was cooled to r.t. and diluted with water. Formed precipitate was filtered and washed with water and water–methanol, 1:1.

Refinement

All H atoms were located from an electron density difference map and included in the refinement in the riding motion approximation with U iso constrained to be 1.5 times U eq of the carrier atom for the methyl groups and 1.2 times U eq of the carrier atom for the other atoms.

Figures

Fig. 1.

View of the title compound with atomic numbering. Displacement ellipsoids drawn at a 50% probability level.

View of the title compound with atomic numbering. Displacement ellipsoids drawn at a 50% probability level.

Crystal data

C 14H 14BrNO 2S Z = 4
M r = 340.23 F(000) = 688
Triclinic, P1 D x = 1.646 Mg m 3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.213 (5) Å Cell parameters from 24 reflections
b = 11.625 (7) Å θ = 10–11°
c = 15.156 (10) Å µ = 3.14 mm 1
α = 98.67 (5)° T = 293 K
β = 99.09 (5)° Needle, colourless
γ = 101.81 (5)° 0.6 × 0.1 × 0.05 mm
V = 1373.1 (15) Å 3

Data collection

Siemens P3/PC diffractometer 3383 reflections with I > 2/s( I)
Radiation source: sealed tube R int = 0.012
graphite θ max = 25.0°, θ min = 2.1°
2θ/θ scans h = −9→4
Absorption correction: integration ( XPREP; Siemens, 1991) k = −13→13
T min = 0.611, T max = 0.855 l = −18→18
7869 measured reflections 2 standard reflections every 98 reflections
4773 independent reflections intensity decay: 1%

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.052 H-atom parameters constrained
wR( F 2) = 0.118 w = 1/[σ 2( F o 2) + (0.0597 P) 2 + 0.9457 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.03 (Δ/σ) max = 0.001
4773 reflections Δρ max = 0.37 e Å 3
348 parameters Δρ min = −0.43 e Å 3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc *=kFc[1+0.001xFc 2λ 3/sin(2θ)] -1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0026 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Br1A 0.62044 (6) 0.83270 (4) 0.58068 (4) 0.05907 (14)
S1A 0.17210 (13) 0.30146 (10) 0.67922 (7) 0.0413 (3)
C1A 0.6441 (5) 0.5017 (3) 0.7900 (2) 0.0269 (8)
H1A 0.6925 0.5695 0.8406 0.032*
C2A 0.6686 (4) 0.5407 (3) 0.7023 (2) 0.0273 (8)
C3A 0.6433 (5) 0.6509 (3) 0.6851 (2) 0.0295 (9)
H3A 0.6122 0.7024 0.7291 0.035*
C4A 0.6641 (5) 0.6833 (3) 0.6045 (3) 0.0346 (9)
C5A 0.7090 (5) 0.6098 (4) 0.5373 (3) 0.0421 (11)
H5A 0.7218 0.6340 0.4825 0.050*
C6A 0.7350 (5) 0.4992 (4) 0.5518 (2) 0.0373 (10)
H6A 0.7678 0.4488 0.5077 0.045*
C7A 0.7109 (4) 0.4659 (3) 0.6333 (2) 0.0271 (8)
O8A 0.7374 (3) 0.3533 (2) 0.64432 (16) 0.0299 (6)
C9A 0.6713 (4) 0.3045 (3) 0.7161 (2) 0.0259 (8)
N10A 0.4847 (4) 0.2771 (2) 0.69181 (19) 0.0284 (7)
H10A 0.4371 0.2105 0.6551 0.034*
C11A 0.3799 (5) 0.3432 (3) 0.7199 (2) 0.0302 (9)
C12A 0.4574 (5) 0.4563 (3) 0.7894 (2) 0.0315 (9)
H12A 0.4436 0.4411 0.8493 0.038*
H12B 0.3979 0.5175 0.7762 0.038*
C13A 0.7290 (4) 0.3964 (3) 0.8053 (2) 0.0264 (8)
H13A 0.6831 0.3599 0.8531 0.032*
C14A 0.9203 (5) 0.4390 (3) 0.8362 (2) 0.0307 (9)
O14A 1.0003 (3) 0.5252 (2) 0.8167 (2) 0.0447 (8)
C15A 1.0060 (6) 0.3680 (4) 0.8959 (3) 0.0531 (13)
H15A 1.1254 0.4039 0.9121 0.080*
H15B 0.9881 0.2874 0.8637 0.080*
H15C 0.9592 0.3675 0.9501 0.080*
C16A 0.7249 (5) 0.1878 (3) 0.7156 (3) 0.0370 (10)
H16A 0.6847 0.1382 0.6564 0.056*
H16B 0.6777 0.1476 0.7599 0.056*
H16C 0.8464 0.2035 0.7304 0.056*
Br1B 0.59308 (7) 1.32613 (4) 1.02809 (3) 0.05332 (14)
S1B −0.10276 (13) 0.80780 (9) 0.93052 (6) 0.0360 (2)
C1B 0.1321 (4) 1.0087 (3) 0.7679 (2) 0.0230 (8)
H1AA 0.1125 1.0779 0.7416 0.028*
C2B 0.3048 (4) 1.0401 (3) 0.8293 (2) 0.0252 (8)
C3B 0.3636 (5) 1.1495 (3) 0.8877 (2) 0.0278 (9)
H3AA 0.2963 1.2048 0.8891 0.033*
C4B 0.5208 (5) 1.1774 (3) 0.9439 (2) 0.0356 (10)
C5B 0.6249 (4) 1.0974 (3) 0.9440 (2) 0.0320 (9)
H5AA 0.7312 1.1168 0.9820 0.038*
C6B 0.5661 (5) 0.9884 (3) 0.8862 (2) 0.0319 (9)
H6AA 0.6343 0.9337 0.8845 0.038*
C7B 0.4067 (4) 0.9585 (3) 0.8304 (2) 0.0224 (8)
O8B 0.3583 (3) 0.84740 (19) 0.77593 (16) 0.0274 (6)
C9B 0.1825 (4) 0.8068 (3) 0.7368 (2) 0.0271 (8)
N10B 0.0844 (4) 0.7827 (2) 0.8077 (2) 0.0293 (7)
H10B 0.0821 0.7148 0.8240 0.035*
C11B −0.0017 (4) 0.8516 (3) 0.8502 (2) 0.0266 (8)
C12B −0.0047 (4) 0.9703 (3) 0.8219 (2) 0.0271 (8)
H12C 0.0108 1.0312 0.8759 0.032*
H12D −0.1150 0.9649 0.7852 0.032*
C13B 0.1177 (4) 0.9023 (3) 0.6920 (2) 0.0235 (8)
H13B −0.0029 0.8700 0.6653 0.028*
C14B 0.2102 (4) 0.9365 (3) 0.6148 (2) 0.0291 (9)
O14B 0.3348 (4) 1.0153 (2) 0.63118 (17) 0.0438 (8)
C15B 0.1367 (7) 0.8714 (5) 0.5217 (3) 0.0717 (17)
H15D 0.1654 0.9222 0.4793 0.108*
H15F 0.0156 0.8478 0.5145 0.108*
H15G 0.1811 0.8015 0.5102 0.108*
C16B 0.1689 (5) 0.6886 (3) 0.6746 (3) 0.0413 (11)
H16F 0.2055 0.6334 0.7100 0.062*
H16G 0.2394 0.7013 0.6304 0.062*
H16D 0.0532 0.6563 0.6439 0.062*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Br1A 0.0566 (3) 0.0473 (2) 0.0811 (3) 0.0145 (2) 0.0039 (2) 0.0429 (2)
S1A 0.0277 (5) 0.0528 (6) 0.0445 (5) 0.0050 (4) 0.0101 (4) 0.0157 (5)
C1A 0.038 (2) 0.0186 (15) 0.0213 (16) 0.0018 (14) 0.0007 (15) 0.0060 (13)
C2A 0.0252 (19) 0.0281 (17) 0.0269 (17) 0.0003 (14) 0.0060 (15) 0.0076 (14)
C3A 0.035 (2) 0.0262 (17) 0.0256 (17) 0.0073 (15) −0.0003 (15) 0.0065 (14)
C4A 0.0252 (19) 0.0378 (19) 0.044 (2) 0.0079 (16) 0.0015 (16) 0.0211 (16)
C5A 0.036 (2) 0.056 (2) 0.0323 (19) −0.0007 (19) 0.0027 (17) 0.0205 (18)
C6A 0.039 (2) 0.048 (2) 0.0257 (17) 0.0051 (18) 0.0129 (16) 0.0090 (16)
C7A 0.0290 (19) 0.0293 (17) 0.0186 (15) −0.0024 (15) 0.0033 (14) 0.0046 (13)
O8A 0.0365 (14) 0.0249 (12) 0.0318 (12) 0.0068 (10) 0.0166 (11) 0.0064 (10)
C9A 0.0244 (18) 0.0211 (15) 0.0372 (18) 0.0032 (14) 0.0144 (15) 0.0151 (13)
N10A 0.0354 (17) 0.0108 (13) 0.0313 (15) −0.0076 (12) 0.0090 (13) −0.0047 (11)
C11A 0.046 (2) 0.0345 (18) 0.0158 (15) 0.0102 (17) 0.0150 (15) 0.0116 (13)
C12A 0.033 (2) 0.0260 (17) 0.0356 (19) 0.0086 (15) 0.0080 (16) 0.0041 (15)
C13A 0.0279 (19) 0.0251 (16) 0.0298 (17) 0.0018 (14) 0.0173 (15) 0.0107 (13)
C14A 0.036 (2) 0.0220 (17) 0.0316 (18) 0.0062 (15) 0.0043 (16) −0.0001 (14)
O14A 0.0347 (15) 0.0250 (13) 0.0719 (19) −0.0046 (11) 0.0084 (14) 0.0193 (13)
C15A 0.044 (3) 0.055 (2) 0.061 (3) 0.001 (2) 0.003 (2) 0.033 (2)
C16A 0.036 (2) 0.0302 (19) 0.050 (2) 0.0109 (17) 0.0164 (18) 0.0104 (16)
Br1B 0.0680 (3) 0.0420 (2) 0.0324 (2) −0.0129 (2) 0.0054 (2) −0.00752 (17)
S1B 0.0361 (5) 0.0435 (5) 0.0338 (5) 0.0083 (4) 0.0157 (4) 0.0162 (4)
C1B 0.0162 (16) 0.0259 (16) 0.0266 (17) 0.0057 (13) −0.0005 (14) 0.0078 (13)
C2B 0.0258 (18) 0.0229 (16) 0.0275 (17) 0.0009 (14) 0.0081 (14) 0.0094 (13)
C3B 0.035 (2) 0.0235 (16) 0.0233 (17) 0.0039 (15) 0.0067 (15) 0.0017 (14)
C4B 0.045 (2) 0.036 (2) 0.0156 (16) −0.0109 (18) 0.0105 (16) −0.0029 (14)
C5B 0.0175 (18) 0.049 (2) 0.0271 (18) 0.0001 (16) −0.0012 (15) 0.0148 (16)
C6B 0.0256 (19) 0.0402 (19) 0.0355 (18) 0.0083 (16) 0.0083 (15) 0.0213 (15)
C7B 0.0206 (17) 0.0233 (16) 0.0252 (16) 0.0034 (13) 0.0091 (14) 0.0083 (13)
O8B 0.0236 (12) 0.0231 (11) 0.0378 (13) 0.0065 (10) 0.0077 (10) 0.0098 (10)
C9B 0.0232 (18) 0.0199 (16) 0.0378 (19) 0.0051 (14) 0.0061 (15) 0.0039 (14)
N10B 0.0295 (16) 0.0202 (13) 0.0422 (16) 0.0036 (12) 0.0123 (13) 0.0152 (12)
C11B 0.0239 (18) 0.0236 (16) 0.0357 (18) 0.0079 (14) 0.0061 (15) 0.0123 (14)
C12B 0.0209 (18) 0.0268 (17) 0.0348 (18) 0.0041 (14) 0.0104 (15) 0.0067 (14)
C13B 0.0187 (17) 0.0192 (15) 0.0307 (17) −0.0035 (13) 0.0035 (14) 0.0106 (13)
C14B 0.0251 (19) 0.0276 (17) 0.0364 (19) 0.0035 (15) 0.0041 (15) 0.0175 (14)
O14B 0.0454 (17) 0.0466 (16) 0.0330 (14) −0.0042 (14) 0.0131 (13) 0.0027 (12)
C15B 0.071 (4) 0.100 (4) 0.031 (2) −0.007 (3) 0.010 (2) 0.007 (3)
C16B 0.041 (2) 0.034 (2) 0.047 (2) 0.0061 (18) 0.0116 (19) 0.0016 (18)

Geometric parameters (Å, °)

Br1A—C4A 1.918 (4) Br1B—C4B 1.909 (4)
S1A—C11A 1.663 (4) S1B—C11B 1.662 (4)
C1A—C2A 1.497 (5) C1B—C2B 1.509 (5)
C1A—C12A 1.514 (5) C1B—C12B 1.525 (5)
C1A—C13A 1.556 (5) C1B—C13B 1.528 (5)
C1A—H1A 0.9800 C1B—H1AA 0.9800
C2A—C7A 1.390 (5) C2B—C3B 1.381 (5)
C2A—C3A 1.394 (5) C2B—C7B 1.388 (5)
C3A—C4A 1.357 (5) C3B—C4B 1.377 (5)
C3A—H3A 0.9300 C3B—H3AA 0.9300
C4A—C5A 1.374 (6) C4B—C5B 1.387 (6)
C5A—C6A 1.390 (6) C5B—C6B 1.373 (5)
C5A—H5A 0.9300 C5B—H5AA 0.9300
C6A—C7A 1.380 (5) C6B—C7B 1.387 (5)
C6A—H6A 0.9300 C6B—H6AA 0.9300
C7A—O8A 1.400 (4) C7B—O8B 1.368 (4)
O8A—C9A 1.431 (4) O8B—C9B 1.423 (4)
C9A—N10A 1.474 (4) C9B—N10B 1.468 (5)
C9A—C16A 1.509 (5) C9B—C16B 1.518 (5)
C9A—C13A 1.532 (5) C9B—C13B 1.526 (5)
N10A—C11A 1.342 (5) N10B—C11B 1.332 (5)
N10A—H10A 0.8600 N10B—H10B 0.8600
C11A—C12A 1.507 (5) C11B—C12B 1.510 (5)
C12A—H12A 0.9700 C12B—H12C 0.9700
C12A—H12B 0.9700 C12B—H12D 0.9700
C13A—C14A 1.521 (5) C13B—C14B 1.549 (5)
C13A—H13A 0.9800 C13B—H13B 0.9800
C14A—O14A 1.186 (4) C14B—O14B 1.190 (4)
C14A—C15A 1.501 (6) C14B—C15B 1.467 (6)
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15F 0.9600
C15A—H15C 0.9600 C15B—H15G 0.9600
C16A—H16A 0.9600 C16B—H16F 0.9600
C16A—H16B 0.9600 C16B—H16G 0.9600
C16A—H16C 0.9600 C16B—H16D 0.9600
C2A—C1A—C12A 110.6 (3) C2B—C1B—C12B 109.8 (3)
C2A—C1A—C13A 111.7 (3) C2B—C1B—C13B 110.6 (3)
C12A—C1A—C13A 106.3 (3) C12B—C1B—C13B 106.6 (3)
C2A—C1A—H1A 109.4 C2B—C1B—H1AA 109.9
C12A—C1A—H1A 109.4 C12B—C1B—H1AA 109.9
C13A—C1A—H1A 109.4 C13B—C1B—H1AA 109.9
C7A—C2A—C3A 117.5 (3) C3B—C2B—C7B 118.2 (3)
C7A—C2A—C1A 121.0 (3) C3B—C2B—C1B 120.9 (3)
C3A—C2A—C1A 121.5 (3) C7B—C2B—C1B 120.9 (3)
C4A—C3A—C2A 120.2 (3) C4B—C3B—C2B 120.7 (4)
C4A—C3A—H3A 119.9 C4B—C3B—H3AA 119.7
C2A—C3A—H3A 119.9 C2B—C3B—H3AA 119.7
C3A—C4A—C5A 121.9 (4) C3B—C4B—C5B 121.5 (3)
C3A—C4A—Br1A 119.5 (3) C3B—C4B—Br1B 119.5 (3)
C5A—C4A—Br1A 118.5 (3) C5B—C4B—Br1B 119.0 (3)
C4A—C5A—C6A 119.5 (4) C6B—C5B—C4B 117.8 (3)
C4A—C5A—H5A 120.2 C6B—C5B—H5AA 121.1
C6A—C5A—H5A 120.2 C4B—C5B—H5AA 121.1
C7A—C6A—C5A 118.2 (4) C5B—C6B—C7B 121.2 (4)
C7A—C6A—H6A 120.9 C5B—C6B—H6AA 119.4
C5A—C6A—H6A 120.9 C7B—C6B—H6AA 119.4
C6A—C7A—C2A 122.6 (4) O8B—C7B—C6B 117.0 (3)
C6A—C7A—O8A 116.1 (3) O8B—C7B—C2B 122.4 (3)
C2A—C7A—O8A 121.3 (3) C6B—C7B—C2B 120.6 (3)
C7A—O8A—C9A 116.4 (3) C7B—O8B—C9B 116.0 (3)
O8A—C9A—N10A 108.0 (3) O8B—C9B—N10B 110.1 (3)
O8A—C9A—C16A 105.3 (3) O8B—C9B—C16B 104.4 (3)
N10A—C9A—C16A 108.0 (3) N10B—C9B—C16B 108.0 (3)
O8A—C9A—C13A 110.2 (3) O8B—C9B—C13B 110.8 (3)
N10A—C9A—C13A 108.6 (3) N10B—C9B—C13B 107.2 (3)
C16A—C9A—C13A 116.5 (3) C16B—C9B—C13B 116.2 (3)
C11A—N10A—C9A 128.0 (3) C11B—N10B—C9B 129.0 (3)
C11A—N10A—H10A 116.0 C11B—N10B—H10B 115.5
C9A—N10A—H10A 116.0 C9B—N10B—H10B 115.5
N10A—C11A—C12A 117.6 (3) N10B—C11B—C12B 117.2 (3)
N10A—C11A—S1A 121.0 (3) N10B—C11B—S1B 121.3 (3)
C12A—C11A—S1A 121.4 (3) C12B—C11B—S1B 121.5 (3)
C11A—C12A—C1A 112.1 (3) C11B—C12B—C1B 112.9 (3)
C11A—C12A—H12A 109.2 C11B—C12B—H12C 109.0
C1A—C12A—H12A 109.2 C1B—C12B—H12C 109.0
C11A—C12A—H12B 109.2 C11B—C12B—H12D 109.0
C1A—C12A—H12B 109.2 C1B—C12B—H12D 109.0
H12A—C12A—H12B 107.9 H12C—C12B—H12D 107.8
C14A—C13A—C9A 114.5 (3) C9B—C13B—C1B 107.0 (3)
C14A—C13A—C1A 111.9 (3) C9B—C13B—C14B 112.9 (3)
C9A—C13A—C1A 105.8 (3) C1B—C13B—C14B 113.2 (3)
C14A—C13A—H13A 108.1 C9B—C13B—H13B 107.9
C9A—C13A—H13A 108.1 C1B—C13B—H13B 107.9
C1A—C13A—H13A 108.1 C14B—C13B—H13B 107.9
O14A—C14A—C15A 120.4 (4) O14B—C14B—C15B 121.6 (4)
O14A—C14A—C13A 122.8 (3) O14B—C14B—C13B 120.4 (3)
C15A—C14A—C13A 116.8 (3) C15B—C14B—C13B 118.0 (3)
C14A—C15A—H15A 109.5 C14B—C15B—H15D 109.5
C14A—C15A—H15B 109.5 C14B—C15B—H15F 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15F 109.5
C14A—C15A—H15C 109.5 C14B—C15B—H15G 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15G 109.5
H15B—C15A—H15C 109.5 H15F—C15B—H15G 109.5
C9A—C16A—H16A 109.5 C9B—C16B—H16F 109.5
C9A—C16A—H16B 109.5 C9B—C16B—H16G 109.5
H16A—C16A—H16B 109.5 H16F—C16B—H16G 109.5
C9A—C16A—H16C 109.5 C9B—C16B—H16D 109.5
H16A—C16A—H16C 109.5 H16F—C16B—H16D 109.5
H16B—C16A—H16C 109.5 H16G—C16B—H16D 109.5
C12A—C1A—C2A—C7A −98.7 (4) C12B—C1B—C2B—C3B −79.3 (4)
C13A—C1A—C2A—C7A 19.4 (4) C13B—C1B—C2B—C3B 163.4 (3)
C12A—C1A—C2A—C3A 78.7 (4) C12B—C1B—C2B—C7B 98.9 (4)
C13A—C1A—C2A—C3A −163.2 (3) C13B—C1B—C2B—C7B −18.5 (4)
C7A—C2A—C3A—C4A −1.6 (5) C7B—C2B—C3B—C4B 1.5 (5)
C1A—C2A—C3A—C4A −179.1 (3) C1B—C2B—C3B—C4B 179.7 (3)
C2A—C3A—C4A—C5A 0.4 (6) C2B—C3B—C4B—C5B −0.1 (5)
C2A—C3A—C4A—Br1A 177.7 (3) C2B—C3B—C4B—Br1B −176.8 (3)
C3A—C4A—C5A—C6A −0.3 (6) C3B—C4B—C5B—C6B −0.2 (5)
Br1A—C4A—C5A—C6A −177.6 (3) Br1B—C4B—C5B—C6B 176.5 (3)
C4A—C5A—C6A—C7A 1.4 (6) C4B—C5B—C6B—C7B −0.9 (5)
C5A—C6A—C7A—C2A −2.7 (6) C5B—C6B—C7B—O8B −179.2 (3)
C5A—C6A—C7A—O8A 179.5 (3) C5B—C6B—C7B—C2B 2.3 (5)
C3A—C2A—C7A—C6A 2.7 (5) C3B—C2B—C7B—O8B 179.1 (3)
C1A—C2A—C7A—C6A −179.7 (3) C1B—C2B—C7B—O8B 0.9 (5)
C3A—C2A—C7A—O8A −179.6 (3) C3B—C2B—C7B—C6B −2.5 (5)
C1A—C2A—C7A—O8A −2.1 (5) C1B—C2B—C7B—C6B 179.3 (3)
C6A—C7A—O8A—C9A −164.1 (3) C6B—C7B—O8B—C9B 164.9 (3)
C2A—C7A—O8A—C9A 18.1 (4) C2B—C7B—O8B—C9B −16.6 (4)
C7A—O8A—C9A—N10A 67.6 (3) C7B—O8B—C9B—N10B −69.1 (3)
C7A—O8A—C9A—C16A −177.2 (3) C7B—O8B—C9B—C16B 175.2 (3)
C7A—O8A—C9A—C13A −50.9 (4) C7B—O8B—C9B—C13B 49.4 (4)
O8A—C9A—N10A—C11A −98.4 (4) O8B—C9B—N10B—C11B 99.0 (4)
C16A—C9A—N10A—C11A 148.2 (3) C16B—C9B—N10B—C11B −147.6 (3)
C13A—C9A—N10A—C11A 21.1 (4) C13B—C9B—N10B—C11B −21.6 (4)
C9A—N10A—C11A—C12A −4.2 (5) C9B—N10B—C11B—C12B 1.5 (5)
C9A—N10A—C11A—S1A 175.8 (3) C9B—N10B—C11B—S1B −179.0 (3)
N10A—C11A—C12A—C1A 21.9 (4) N10B—C11B—C12B—C1B −16.3 (4)
S1A—C11A—C12A—C1A −158.0 (3) S1B—C11B—C12B—C1B 164.1 (2)
C2A—C1A—C12A—C11A 66.0 (4) C2B—C1B—C12B—C11B −69.2 (4)
C13A—C1A—C12A—C11A −55.4 (4) C13B—C1B—C12B—C11B 50.6 (4)
O8A—C9A—C13A—C14A −58.5 (4) O8B—C9B—C13B—C1B −65.1 (4)
N10A—C9A—C13A—C14A −176.6 (3) N10B—C9B—C13B—C1B 55.1 (3)
C16A—C9A—C13A—C14A 61.2 (4) C16B—C9B—C13B—C1B 176.0 (3)
O8A—C9A—C13A—C1A 65.2 (3) O8B—C9B—C13B—C14B 60.1 (4)
N10A—C9A—C13A—C1A −52.9 (3) N10B—C9B—C13B—C14B −179.8 (3)
C16A—C9A—C13A—C1A −175.1 (3) C16B—C9B—C13B—C14B −58.9 (4)
C2A—C1A—C13A—C14A 76.9 (3) C2B—C1B—C13B—C9B 47.7 (4)
C12A—C1A—C13A—C14A −162.5 (3) C12B—C1B—C13B—C9B −71.6 (3)
C2A—C1A—C13A—C9A −48.5 (4) C2B—C1B—C13B—C14B −77.2 (4)
C12A—C1A—C13A—C9A 72.2 (3) C12B—C1B—C13B—C14B 163.4 (3)
C9A—C13A—C14A—O14A 92.4 (4) C9B—C13B—C14B—O14B −89.8 (4)
C1A—C13A—C14A—O14A −28.0 (5) C1B—C13B—C14B—O14B 31.9 (5)
C9A—C13A—C14A—C15A −89.3 (4) C9B—C13B—C14B—C15B 91.9 (4)
C1A—C13A—C14A—C15A 150.3 (3) C1B—C13B—C14B—C15B −146.4 (4)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
N10A—H10A···O14B i 0.86 2.20 2.981 (4) 150
N10B—H10B···O14A ii 0.86 2.15 2.960 (4) 157

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z.

References

1  

Biala, J., Czarnocki, Z. & Maurin, J. K. (2002). Tetrahedron Asymmetry, 13, 1021–1023.

2  

Bilokin, Y. V., Kovalenko, S. N. & Chernykh, V. P. (1988). Heterocycl. Commun. 4, 169–170.

3  

Konovalova, I. S., Zaremba, O. V., Kovalenko, S. S., Chernykh, V. P., Kovalenko, S. M., Baumer, V. N. & Shishkin, O. V. (2007). Acta Cryst. E 63, o4906.

4  

Kovalenko, V. N. & Victorova, A. P. (2005). Compendium of Medicinal Preparation, p. 1920. Kiev: Morion.

5  

O’Callaghan, C. N., McMurry, T. B. H., O’Brien, J. E. & Draper, S. M. (1997). J. Chem. Res. 312, 2101–2122.

6  

Raev, L. D., Frey, W. & Ivanov, I. C. (2004). Synlett, pp. 1584–88.

7  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

8  

Siemens (1991). P3, XDISK and XPREP Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

9  

Zaragoza Dorwald, F. (2000). US Patent 6136984 24 10.

10  

Zefirov, Yu. V. & Zorky, P. M. (1995). Usp. Khim. 64, 446–460.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
N10 A—H10 A⋯O14 B i 0.86 2.20 2.981 (4) 150
N10 B—H10 B⋯O14 A ii 0.86 2.15 2.960 (4) 157

Symmetry codes: (i) e-65-0o461-efi2.jpg ; (ii) e-65-0o461-efi3.jpg .