Ethyl 4-(4-bromo­phen­yl)-6-(4-ethoxy­phen­yl)-2-oxocyclo­hex-3-enecarboxyl­ate

Badshah, Amir a Hasan, Aurangzeb a * Barbarín, Cecilia R. b [a ] Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan [b ] División de Estudios de Posgrado, Facultad de Ciencias Químicas, UANL, Guerreo y Progreso S/N, Col. Treviño, CP, 64570 Monterrey, NL, Mexico

Abstract

The title compound, C 23H 23BrO 4, is an inter­mediate in the synthesis of fused heterocycles. In the title mol­ecule, the cyclo­hexene ring has a distorted half-chair conformation. The bromo­phenyl ring and the mean plane of the cyclo­hexene ring form a dihedral angle of 13.8 (3)°, whereas the benzene and cyclo­hexene rings are approximately perpendicular [88.44 (17)°]. There are only weak C—H⋯O and C—H⋯π inter­molecular inter­actions.

Related literature

For applications of cyclo­hexenones, see: Eddington et al. (2000 ); Li & Strobel (2001 ); Luu et al. (2000 ); Padmavathi et al. (2000 , 2001 ). e-65-0o467-scheme1.jpg

Experimental

Crystal data

  • C 23H 23BrO 4

  • M r = 443.32

  • Monoclinic, e-65-0o467-efi1.jpg

  • a = 12.792 (4) Å

  • b = 14.537 (4) Å

  • c = 12.114 (4) Å

  • β = 113.88 (2)°

  • V = 2059.8 (11) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm −1

  • T = 298 (2) K

  • 0.50 × 0.50 × 0.08 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: gaussian ( XSCANS; Bruker, 1999 ) T min = 0.246, T max = 0.941

  • 7765 measured reflections

  • 3630 independent reflections

  • 2088 reflections with I > 2σ( I)

  • R int = 0.054

  • 3 standard reflections every 97 reflections intensity decay: 6.4%

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.059

  • wR( F 2) = 0.175

  • S = 1.01

  • 3630 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρ max = 0.44 e Å −3

  • Δρ min = −0.41 e Å −3

Data collection: XSCANS (Bruker, 1999 ); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008 ); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006 ); software used to prepare material for publication: SHELXTL-Plus.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003523/gk2184sup1.cif

e-65-0o467-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003523/gk2184Isup2.hkl

e-65-0o467-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2184).

Acknowledgements

AB is grateful to the Higher Education Commission of Pakistan for a PhD scholarship.

Appendices

supplementary crystallographic information

Comment

Cyclohexenones are either prepared from natural sources or entirely via synthetic routes. The reason for their preparation is a variety of medical effects. The molecules provide anticonvulsant, antimalarial, antiinflamatory and cardiovascular effects (Eddington et al., 2000). Cyclohexenones are also important intermediates for many biologically active compounds (Padmavathi et al., 2001; Padmavathi et al., 2000). A series of novel compounds have been synthesized, known as cyclohexenoic long chain fatty alcohols, which are used in the treatment of neurological disorders (Luu et al. , 2000). A number of their derivatives have fungicidal and antitumor activities (Li & Strobel, 2001).

In the title compound, C 23H 23BrO 4 (Scheme 1, Fig. 1), the two rings, i.e. bromophenyl [C1-C6] and the cyclohexene [C7-C12], are slightly twisted' with the dihedral angle of 13.8 (3)°. Cyclohexene [C7- C12], is approximately perpendicular to the benzene ring [C16-C21] [88.44 (17)°]. The title molecule has two asymmetric carbon atoms C9 and C12 that are in RS and SR configurations, respectively. The comformation of the cyclohexene ring is distorted half chair [Θ = 50.6 (10) and Φ = 138.9 (13)°, compared with the ideal values of Θ = 50.0 and Φ = 150.0°].

As indicated by intermolecular contacts. there are only weak intermolecular interactions X—H···O and C—H···π (Table 1). The crystal packing is shown in Fig. 2.

Experimental

Ethyl 4-(4-bromophenyl)-6-(4-ethoxyphenyl)-2-oxocyclhex-3-enecarboxylate was synthesized by refluxing ethyl acetoacetate (0.39 g, 0.40 ml, 3 mmol) with 1-(4-bromophenyl)-3-(4-ethoxyphenyl) prop-2-ene-1-one (3 mmol, 0.990 g) for 2 h in 10–15 ml of ethanol in presence of 0.5 ml 10% NaOH. The reaction mixture was then poured while having been stirred intensively into 200 ml of ice-cold water. The mixture was kept at room temperature until the reaction product separated as a solid, which was filtered off and recrystallized from ethanol (yield 65%, m.p. 400 K).

Refinement

All the hydrogen atoms have been found in a difference Fourier map, nevertheless, they were placed in idealized positions and refined as riding atoms at constrained distances: aromatic C—H = 0.93, C methylene—H=0.97, C methine—H=0.98 and methyl C—H = 0.96 Å, while U isoH=1.5 U eqC methyl or 1.2 U eqC aryl/methylene/methine.

Figures

Fig. 1.

The title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

The title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.

The packing diagram of the title compound, viewed along the c axis showing weak C—H···O and C—H···π interactions

The packing diagram of the title compound, viewed along the c axis showing weak C—H···O and C—H···π interactions

Crystal data

C 23H 23BrO 4 F(000) = 912
M r = 443.32 D x = 1.430 Mg m 3
Monoclinic, P2 1/ c Melting point: 400 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.792 (4) Å Cell parameters from 91 reflections
b = 14.537 (4) Å θ = 4.6–12.4°
c = 12.114 (4) Å µ = 2.02 mm 1
β = 113.88 (2)° T = 298 K
V = 2059.8 (11) Å 3 Plate, colourless
Z = 4 0.50 × 0.50 × 0.08 mm

Data collection

Bruker P4 diffractometer 2088 reflections with I > 2σ( I)
Radiation source: fine-focus sealed tube R int = 0.054
graphite θ max = 25.0°, θ min = 2.2°
ω scans h = −14→15
Absorption correction: gaussian ( XSCANS; Bruker, 1999) k = −1→17
T min = 0.246, T max = 0.941 l = −14→14
7765 measured reflections 3 standard reflections every 97 reflections
3630 independent reflections intensity decay: 6.4%

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.059 H-atom parameters constrained
wR( F 2) = 0.175 w = 1/[σ 2( F o 2) + (0.0744 P) 2 + 1.4731 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.01 (Δ/σ) max < 0.001
3630 reflections Δρ max = 0.44 e Å 3
254 parameters Δρ min = −0.41 e Å 3
0 restraints Extinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc *=kFc[1+0.001xFc 2λ 3/sin(2θ)] -1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0050 (10)

Special details

Experimental. Absorption correction based on 6 crystal faces Faces used: 001, 00–1, 20–1, -201, 010, 0–10
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Br1 0.12714 (6) 0.10565 (5) 1.01969 (7) 0.1061 (4)
O1 0.5590 (3) 0.4373 (2) 0.7177 (4) 0.0864 (11)
O2 0.6752 (4) 0.3470 (3) 0.5468 (4) 0.1049 (13)
O3 0.7863 (4) 0.3351 (3) 0.7398 (4) 0.0901 (11)
O4 0.8559 (3) −0.0461 (2) 0.5587 (3) 0.0662 (9)
C1 0.2279 (4) 0.1456 (4) 0.9511 (5) 0.0673 (13)
C2 0.2177 (5) 0.2318 (4) 0.9038 (5) 0.0777 (15)
H2A 0.1619 0.2715 0.9068 0.093*
C3 0.2889 (4) 0.2597 (3) 0.8525 (5) 0.0700 (13)
H3A 0.2809 0.3185 0.8200 0.084*
C4 0.3099 (4) 0.0866 (3) 0.9484 (5) 0.0687 (13)
H4A 0.3174 0.0281 0.9818 0.082*
C5 0.3812 (4) 0.1153 (3) 0.8955 (5) 0.0635 (12)
H5A 0.4362 0.0749 0.8922 0.076*
C6 0.3739 (4) 0.2020 (3) 0.8474 (4) 0.0534 (11)
C7 0.4524 (4) 0.2326 (3) 0.7936 (4) 0.0523 (10)
C8 0.5179 (4) 0.1615 (3) 0.7592 (4) 0.0591 (12)
H8A 0.5465 0.1162 0.8234 0.071*
H8B 0.4660 0.1302 0.6871 0.071*
C9 0.6161 (5) 0.1980 (3) 0.7360 (6) 0.0819 (16)
H9A 0.6733 0.2120 0.8171 0.098*
C10 0.4667 (4) 0.3220 (3) 0.7762 (5) 0.0649 (13)
H10A 0.4249 0.3647 0.7988 0.078*
C11 0.5422 (4) 0.3557 (3) 0.7250 (5) 0.0664 (13)
C12 0.5970 (5) 0.2855 (3) 0.6760 (6) 0.0923 (19)
H12A 0.5368 0.2717 0.5965 0.111*
C13 0.6893 (5) 0.3258 (3) 0.6454 (7) 0.0745 (15)
C14 0.8792 (5) 0.3710 (5) 0.7141 (8) 0.122 (3)
H14A 0.9372 0.3963 0.7873 0.147*
H14B 0.8510 0.4203 0.6554 0.147*
C15 0.9299 (8) 0.2991 (7) 0.6667 (11) 0.176 (4)
H15A 0.9915 0.3247 0.6506 0.264*
H15B 0.8728 0.2748 0.5934 0.264*
H15C 0.9587 0.2506 0.7251 0.264*
C16 0.6757 (5) 0.1277 (3) 0.6896 (5) 0.0666 (13)
C17 0.6243 (4) 0.0920 (4) 0.5765 (6) 0.0792 (15)
H17A 0.5488 0.1082 0.5298 0.095*
C18 0.6789 (4) 0.0329 (4) 0.5277 (5) 0.0737 (14)
H18A 0.6411 0.0099 0.4499 0.088*
C19 0.7853 (5) 0.0997 (3) 0.7578 (5) 0.0791 (15)
H19A 0.8221 0.1205 0.8368 0.095*
C20 0.8414 (5) 0.0416 (4) 0.7115 (5) 0.0747 (14)
H20A 0.9160 0.0240 0.7593 0.090*
C21 0.7896 (4) 0.0092 (3) 0.5964 (4) 0.0574 (11)
C22 0.8162 (5) −0.0624 (4) 0.4328 (5) 0.0775 (14)
H22A 0.7985 −0.0046 0.3891 0.093*
H22B 0.7475 −0.0997 0.4051 0.093*
C23 0.9080 (5) −0.1110 (4) 0.4114 (6) 0.0858 (17)
H23A 0.8839 −0.1220 0.3265 0.129*
H23B 0.9237 −0.1687 0.4536 0.129*
H23C 0.9759 −0.0739 0.4402 0.129*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Br1 0.1224 (6) 0.1085 (6) 0.1275 (7) −0.0075 (4) 0.0918 (5) −0.0037 (4)
O1 0.107 (3) 0.0405 (19) 0.126 (3) −0.0019 (18) 0.061 (2) 0.0037 (19)
O2 0.105 (3) 0.111 (3) 0.100 (3) −0.012 (3) 0.042 (3) 0.002 (3)
O3 0.085 (3) 0.084 (3) 0.100 (3) −0.009 (2) 0.036 (3) 0.000 (2)
O4 0.068 (2) 0.065 (2) 0.072 (2) 0.0053 (16) 0.0340 (18) −0.0070 (17)
C1 0.076 (3) 0.067 (3) 0.072 (3) −0.006 (3) 0.043 (3) −0.012 (3)
C2 0.085 (4) 0.072 (4) 0.093 (4) 0.016 (3) 0.054 (3) −0.005 (3)
C3 0.080 (3) 0.054 (3) 0.086 (4) 0.012 (2) 0.044 (3) 0.003 (2)
C4 0.075 (3) 0.051 (3) 0.086 (4) 0.000 (2) 0.039 (3) 0.001 (2)
C5 0.062 (3) 0.051 (3) 0.084 (4) 0.002 (2) 0.037 (3) −0.005 (2)
C6 0.060 (3) 0.041 (2) 0.061 (3) 0.004 (2) 0.025 (2) −0.005 (2)
C7 0.057 (3) 0.041 (2) 0.058 (3) 0.0010 (19) 0.022 (2) −0.003 (2)
C8 0.065 (3) 0.042 (2) 0.078 (3) −0.005 (2) 0.037 (3) −0.003 (2)
C9 0.106 (4) 0.048 (3) 0.124 (5) 0.007 (3) 0.080 (4) 0.005 (3)
C10 0.067 (3) 0.050 (3) 0.083 (4) 0.003 (2) 0.036 (3) −0.004 (2)
C11 0.071 (3) 0.047 (3) 0.079 (4) 0.000 (2) 0.028 (3) 0.000 (2)
C12 0.111 (4) 0.049 (3) 0.153 (6) −0.006 (3) 0.091 (4) 0.003 (3)
C13 0.081 (4) 0.052 (3) 0.101 (5) −0.010 (3) 0.048 (4) −0.006 (3)
C14 0.065 (4) 0.109 (5) 0.189 (8) −0.015 (4) 0.046 (5) −0.004 (5)
C15 0.128 (7) 0.185 (9) 0.266 (12) 0.007 (7) 0.133 (8) 0.023 (9)
C16 0.089 (4) 0.047 (3) 0.082 (4) −0.006 (3) 0.053 (3) −0.001 (3)
C17 0.057 (3) 0.084 (4) 0.099 (4) 0.010 (3) 0.033 (3) 0.003 (3)
C18 0.061 (3) 0.080 (3) 0.079 (4) −0.001 (3) 0.027 (3) −0.014 (3)
C19 0.095 (4) 0.074 (3) 0.072 (4) 0.018 (3) 0.038 (3) 0.002 (3)
C20 0.073 (3) 0.077 (3) 0.068 (4) 0.016 (3) 0.022 (3) −0.004 (3)
C21 0.068 (3) 0.049 (2) 0.063 (3) −0.002 (2) 0.034 (3) 0.001 (2)
C22 0.081 (3) 0.081 (3) 0.079 (4) −0.006 (3) 0.041 (3) −0.016 (3)
C23 0.094 (4) 0.090 (4) 0.091 (4) −0.013 (3) 0.056 (3) −0.027 (3)

Geometric parameters (Å, °)

Br1—C1 1.886 (5) C10—H10A 0.9300
O1—C11 1.216 (6) C11—C12 1.490 (7)
O2—C13 1.176 (7) C12—C13 1.493 (7)
O3—C13 1.311 (7) C12—H12A 0.9800
O3—C14 1.442 (7) C14—C15 1.465 (11)
O4—C21 1.374 (5) C14—H14A 0.9700
O4—C22 1.419 (6) C14—H14B 0.9700
C1—C2 1.361 (7) C15—H15A 0.9600
C1—C4 1.366 (7) C15—H15B 0.9600
C2—C3 1.357 (7) C15—H15C 0.9600
C2—H2A 0.9300 C16—C17 1.360 (8)
C3—C6 1.393 (6) C16—C19 1.370 (7)
C3—H3A 0.9300 C17—C18 1.382 (7)
C4—C5 1.375 (7) C17—H17A 0.9300
C4—H4A 0.9300 C18—C21 1.365 (7)
C5—C6 1.375 (6) C18—H18A 0.9300
C5—H5A 0.9300 C19—C20 1.366 (7)
C6—C7 1.470 (6) C19—H19A 0.9300
C7—C10 1.342 (6) C20—C21 1.363 (7)
C7—C8 1.492 (6) C20—H20A 0.9300
C8—C9 1.492 (6) C22—C23 1.480 (7)
C8—H8A 0.9700 C22—H22A 0.9700
C8—H8B 0.9700 C22—H22B 0.9700
C9—C12 1.436 (7) C23—H23A 0.9600
C9—C16 1.512 (6) C23—H23B 0.9600
C9—H9A 0.9800 C23—H23C 0.9600
C10—C11 1.429 (7)
C13—O3—C14 114.9 (5) C13—C12—H12A 102.8
C21—O4—C22 117.1 (4) O2—C13—O3 124.1 (5)
C2—C1—C4 120.8 (5) O2—C13—C12 123.0 (7)
C2—C1—Br1 120.2 (4) O3—C13—C12 112.9 (6)
C4—C1—Br1 119.1 (4) O3—C14—C15 111.2 (6)
C3—C2—C1 120.0 (5) O3—C14—H14A 109.4
C3—C2—H2A 120.0 C15—C14—H14A 109.4
C1—C2—H2A 120.0 O3—C14—H14B 109.4
C2—C3—C6 121.4 (5) C15—C14—H14B 109.4
C2—C3—H3A 119.3 H14A—C14—H14B 108.0
C6—C3—H3A 119.3 C14—C15—H15A 109.5
C1—C4—C5 118.8 (5) C14—C15—H15B 109.5
C1—C4—H4A 120.6 H15A—C15—H15B 109.5
C5—C4—H4A 120.6 C14—C15—H15C 109.5
C4—C5—C6 122.1 (4) H15A—C15—H15C 109.5
C4—C5—H5A 119.0 H15B—C15—H15C 109.5
C6—C5—H5A 119.0 C17—C16—C19 116.9 (5)
C5—C6—C3 117.0 (4) C17—C16—C9 121.4 (5)
C5—C6—C7 121.5 (4) C19—C16—C9 121.6 (5)
C3—C6—C7 121.5 (4) C16—C17—C18 123.1 (5)
C10—C7—C6 121.6 (4) C16—C17—H17A 118.4
C10—C7—C8 120.0 (4) C18—C17—H17A 118.4
C6—C7—C8 118.5 (4) C21—C18—C17 118.4 (5)
C9—C8—C7 114.7 (4) C21—C18—H18A 120.8
C9—C8—H8A 108.6 C17—C18—H18A 120.8
C7—C8—H8A 108.6 C20—C19—C16 121.1 (5)
C9—C8—H8B 108.6 C20—C19—H19A 119.5
C7—C8—H8B 108.6 C16—C19—H19A 119.5
H8A—C8—H8B 107.6 C21—C20—C19 121.0 (5)
C12—C9—C8 115.2 (4) C21—C20—H20A 119.5
C12—C9—C16 114.7 (4) C19—C20—H20A 119.5
C8—C9—C16 114.8 (4) C20—C21—C18 119.4 (4)
C12—C9—H9A 103.2 C20—C21—O4 115.7 (4)
C8—C9—H9A 103.2 C18—C21—O4 124.9 (4)
C16—C9—H9A 103.2 O4—C22—C23 107.7 (4)
C7—C10—C11 124.0 (4) O4—C22—H22A 110.2
C7—C10—H10A 118.0 C23—C22—H22A 110.2
C11—C10—H10A 118.0 O4—C22—H22B 110.2
O1—C11—C10 122.4 (5) C23—C22—H22B 110.2
O1—C11—C12 121.0 (4) H22A—C22—H22B 108.5
C10—C11—C12 116.6 (4) C22—C23—H23A 109.5
C9—C12—C11 114.6 (5) C22—C23—H23B 109.5
C9—C12—C13 118.9 (5) H23A—C23—H23B 109.5
C11—C12—C13 112.1 (4) C22—C23—H23C 109.5
C9—C12—H12A 102.8 H23A—C23—H23C 109.5
C11—C12—H12A 102.8 H23B—C23—H23C 109.5
C4—C1—C2—C3 0.5 (9) C10—C11—C12—C9 −30.2 (8)
Br1—C1—C2—C3 −178.7 (4) O1—C11—C12—C13 12.5 (8)
C1—C2—C3—C6 −0.4 (9) C10—C11—C12—C13 −169.7 (5)
C2—C1—C4—C5 −0.9 (8) C14—O3—C13—O2 −2.3 (8)
Br1—C1—C4—C5 178.3 (4) C14—O3—C13—C12 178.0 (5)
C1—C4—C5—C6 1.2 (8) C9—C12—C13—O2 123.8 (7)
C4—C5—C6—C3 −1.2 (7) C11—C12—C13—O2 −98.6 (7)
C4—C5—C6—C7 178.6 (4) C9—C12—C13—O3 −56.5 (7)
C2—C3—C6—C5 0.7 (8) C11—C12—C13—O3 81.1 (6)
C2—C3—C6—C7 −179.0 (5) C13—O3—C14—C15 −79.5 (8)
C5—C6—C7—C10 −162.0 (5) C12—C9—C16—C17 −66.9 (7)
C3—C6—C7—C10 17.7 (7) C8—C9—C16—C17 70.0 (7)
C5—C6—C7—C8 17.5 (6) C12—C9—C16—C19 110.6 (6)
C3—C6—C7—C8 −162.8 (5) C8—C9—C16—C19 −112.4 (6)
C10—C7—C8—C9 14.6 (7) C19—C16—C17—C18 −2.6 (8)
C6—C7—C8—C9 −164.8 (4) C9—C16—C17—C18 175.1 (5)
C7—C8—C9—C12 −37.7 (7) C16—C17—C18—C21 0.1 (8)
C7—C8—C9—C16 −174.4 (5) C17—C16—C19—C20 2.8 (8)
C6—C7—C10—C11 179.6 (4) C9—C16—C19—C20 −174.8 (5)
C8—C7—C10—C11 0.2 (8) C16—C19—C20—C21 −0.6 (8)
C7—C10—C11—O1 −175.0 (5) C19—C20—C21—C18 −2.0 (8)
C7—C10—C11—C12 7.3 (8) C19—C20—C21—O4 177.9 (4)
C8—C9—C12—C11 45.5 (8) C17—C18—C21—C20 2.2 (7)
C16—C9—C12—C11 −177.8 (5) C17—C18—C21—O4 −177.6 (4)
C8—C9—C12—C13 −178.0 (5) C22—O4—C21—C20 −164.8 (4)
C16—C9—C12—C13 −41.2 (9) C22—O4—C21—C18 15.0 (6)
O1—C11—C12—C9 152.0 (6) C21—O4—C22—C23 171.5 (4)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
C5—H5A···O1 i 0.93 2.42 3.163 (6) 137
C8—H8A···O2 ii 0.97 2.59 3.244 (6) 125
C15—H15B···O2 0.96 2.58 3.062 (13) 111
C23—H23A···Cg iii 0.96 2.90 3.741 (6) 147

Symmetry codes: (i) − x+1, y−1/2, − z+3/2; (ii) x, − y+1/2, z+1/2; (iii) − x+1, − y+1, − z.

References

1  

Bruker (1999). XSCANS Users Manual Bruker AXS Inc., Madison, Wisconsin, USA.

2  

Eddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417–436.

3  

Li, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261–265.

4  

Luu, B., Aguilar, J. L. G. D. & Junges, C. G. (2000). Molecules, 5, 1439–1460.

5  

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

6  

Padmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281–1286.

7  

Padmavathi, V., Sharmila, K., Reddy, A. S. & Reddy, D. B. (2001). Indian J. Chem. Sect. B, 40, 11–14.

8  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
C5—H5 A⋯O1 i 0.93 2.42 3.163 (6) 137
C8—H8 A⋯O2 ii 0.97 2.59 3.244 (6) 125
C15—H15 B⋯O2 0.96 2.58 3.062 (13) 111
C23—H23 ACg iii 0.96 2.90 3.741 (6) 147

Symmetry codes: (i) e-65-0o467-efi2.jpg ; (ii) e-65-0o467-efi3.jpg ; (iii) e-65-0o467-efi4.jpg .