{4,4′,5,5′-Tetra­methyl-2,2′-[1,1′-(ethane-1,2-diyldinitrilo)diethyl­idyne]diphenolato}nickel(II)–methanol–chloro­form (1/1/1)

Fun, Hoong-Kun a * Kia, Reza a [a ] X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Abstract

In the title compound, [Ni(C 22H 26N 2O 2)]·CH 3OH·CHCl 3, the Ni II ion is in a slightly distorted square-planar geometry involving an N 2O 2 atom set of the tetra­dentate Schiff base ligand. The asymmetric unit contains one mol­ecule of the complex and one mol­ecule each of chloro­form and methanol. The methanol mol­ecule is hydrogen bonded to the phenolate O atoms. In the crystal structure, short inter­molecular distances between the centroids of six-membered chelate rings [3.7002 (9) Å] indicate the presence of π–π inter­actions, which link the mol­ecules into stacks along the a axis. In addition, there are Ni⋯Ni distances which are shorter than the sum of the van der Waals radii of two Ni atoms. The crystal structure is further stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, and weak inter­molecular C—H⋯π inter­actions linking mol­ecules into extended one-dimensional chains along the c axis.

Related literature

For bond-length data, see Allen et al. (1987 ). For related structures see, for example: Clark et al. (1968 , 1969 , 1970 ). For applications and bioactivities see, for example: Elmali et al. (2000 ); Blower (1998 ); Granovski et al. (1993 ); Li & Chang (1991 ); Shahrokhian et al. (2000 ). e-64-m1116-scheme1.jpg

Experimental

Crystal data

  • [Ni(C 22H 26N 2O 2)]·CH 4O·CHCl 3

  • M r = 560.59

  • Triclinic, e-64-m1116-efi1.jpg

  • a = 7.5473 (1) Å

  • b = 12.3899 (2) Å

  • c = 14.2481 (2) Å

  • α = 75.949 (1)°

  • β = 83.761 (1)°

  • γ = 74.693 (1)°

  • V = 1245.21 (3) Å 3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm −1

  • T = 100.0 (1) K

  • 0.36 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan ( SADABS; Bruker, 2005 ) T min = 0.684, T max = 0.882

  • 29477 measured reflections

  • 7348 independent reflections

  • 5851 reflections with I > 2σ( I)

  • R int = 0.038

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.040

  • wR( F 2) = 0.103

  • S = 1.04

  • 7348 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρ max = 0.71 e Å −3

  • Δρ min = −0.80 e Å −3

Data collection: APEX2 (Bruker, 2005 ); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 ); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 ).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024306/lh2659sup1.cif

e-64-m1116-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024306/lh2659Isup2.hkl

e-64-m1116-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2659).

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Appendices

supplementary crystallographic information

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (I, Fig. 1), the Ni II ion shows a sligthly distorted square-planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lenghts and angles are within the normal ranges (Allen et al., 1987). The asymmetric unit of the compound contains one molecule of the complex, and a molecule each of the chloroform and the methanol solvents. The methanol molecule is H-bonded to the phenolato oxygen atoms of the complex. Atoms C8 and C9 are significantly out of the plane, as indicated by the torsion angle N1–C8–C9–N2, which is -31.8 (2)°. The dihedral angle between two benzene rings is 11.11 (9)°. The planar molecules are stacked into columns along the a axis, with Ni···Ni [(i) 1 - x, - y, 1 - z and (ii) 2 - x, - y, 1 - z] separations of 4.1276 (3) to 4.5626 (3) Å are shorter than the sum of the van der Waals radii of two Ni atoms (4.60 Å). The short intermolecular distances between the centroids of six-membered rings [3.7002 (9) Å] prove an existence of π-π interactions, which link the molecules into one-dimensional extended chains along the a axis (Fig. 2). The crystal packing is further stabilized by intermolecular O—H···O, C—H···O hydrogen bonds and weak intermolecular C—H···π interactions..

Experimental

A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20) of NiCl 2.6H 2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air for 4 d, pink block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

The H-atom attached to O3 was located in a difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refind using a riding model. A rotating-group model was used for the methyl groups.

Figures

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines.
Fig. 2.

The crystal packing of (I), showing stacks viewed down the a axis. Intermolecular interactions are drawn as dashed lines.

The crystal packing of (I), showing stacks viewed down the a axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

[Ni(C 22H 26N 2O 2)]·CH 4O·CHCl 3 Z = 2
M r = 560.59 F 000 = 584
Triclinic, P1 D x = 1.495 Mg m 3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.5473 (1) Å Cell parameters from 7819 reflections
b = 12.3899 (2) Å θ = 2.5–29.3º
c = 14.2481 (2) Å µ = 1.13 mm 1
α = 75.949 (1)º T = 100.0 (1) K
β = 83.761 (1)º Block, pink
γ = 74.693 (1)º 0.36 × 0.17 × 0.11 mm
V = 1245.21 (3) Å 3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7348 independent reflections
Radiation source: fine-focus sealed tube 5851 reflections with I > 2σ( I)
Monochromator: graphite R int = 0.038
T = 100.0(1) K θ max = 30.2º
φ and ω scans θ min = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −10→10
T min = 0.684, T max = 0.882 k = −16→17
29477 measured reflections l = −20→20

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.040 H-atom parameters constrained
wR( F 2) = 0.103   w = 1/[σ 2( F o 2) + (0.0463 P) 2 + 0.6625 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.04 (Δ/σ) max = 0.001
7348 reflections Δρ max = 0.71 e Å 3
305 parameters Δρ min = −0.80 e Å 3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Ni1 0.73830 (3) 0.02552 (2) 0.422240 (16) 0.01582 (7)
O1 0.59273 (18) 0.16632 (11) 0.43248 (9) 0.0194 (3)
O2 0.72158 (19) 0.08848 (11) 0.29250 (9) 0.0221 (3)
N1 0.7520 (2) −0.03073 (13) 0.55493 (11) 0.0168 (3)
N2 0.8874 (2) −0.11446 (13) 0.40463 (11) 0.0169 (3)
C1 0.5369 (2) 0.20434 (16) 0.51176 (13) 0.0173 (3)
C2 0.4308 (3) 0.31894 (16) 0.49954 (13) 0.0192 (4)
H2A 0.4036 0.3612 0.4371 0.023*
C3 0.3656 (3) 0.37099 (16) 0.57621 (14) 0.0198 (4)
C4 0.4074 (2) 0.30783 (17) 0.67159 (13) 0.0199 (4)
C5 0.5071 (2) 0.19556 (17) 0.68422 (13) 0.0195 (4)
H5A 0.5317 0.1539 0.7471 0.023*
C6 0.5749 (2) 0.13932 (16) 0.60716 (13) 0.0175 (3)
C7 0.6784 (2) 0.01988 (16) 0.62568 (13) 0.0179 (3)
C8 0.8448 (3) −0.15402 (16) 0.58025 (13) 0.0194 (4)
H8A 0.7540 −0.1991 0.5959 0.023*
H8B 0.9172 −0.1700 0.6365 0.023*
C9 0.9685 (3) −0.18622 (16) 0.49521 (13) 0.0193 (4)
H9A 1.0894 −0.1747 0.4995 0.023*
H9B 0.9822 −0.2666 0.4963 0.023*
C10 0.9362 (2) −0.15019 (16) 0.32411 (13) 0.0176 (3)
C11 0.8610 (2) −0.08203 (16) 0.23219 (13) 0.0175 (3)
C12 0.8869 (2) −0.13058 (16) 0.14945 (13) 0.0187 (4)
H12A 0.9530 −0.2066 0.1556 0.022*
C14 0.7214 (2) 0.04489 (17) 0.05063 (13) 0.0187 (4)
C15 0.6937 (3) 0.09445 (16) 0.12986 (13) 0.0195 (4)
H15A 0.6291 0.1709 0.1224 0.023*
C16 0.7598 (3) 0.03323 (16) 0.22177 (13) 0.0185 (4)
C17 0.2529 (3) 0.49346 (17) 0.55849 (15) 0.0256 (4)
H17A 0.2465 0.5250 0.4900 0.038*
H17B 0.3094 0.5377 0.5873 0.038*
H17C 0.1311 0.4957 0.5869 0.038*
C18 0.3461 (3) 0.36271 (18) 0.75716 (14) 0.0263 (4)
H18A 0.3831 0.3070 0.8158 0.039*
H18B 0.2147 0.3904 0.7593 0.039*
H18C 0.4016 0.4257 0.7508 0.039*
C19 0.7027 (3) −0.04867 (18) 0.72865 (14) 0.0252 (4)
H19A 0.6730 −0.1209 0.7348 0.038*
H19B 0.6226 −0.0067 0.7717 0.038*
H19C 0.8280 −0.0621 0.7449 0.038*
C20 1.0714 (3) −0.26399 (16) 0.32619 (14) 0.0210 (4)
H20A 1.1643 −0.2748 0.3709 0.031*
H20B 1.1278 −0.2655 0.2626 0.031*
H20C 1.0084 −0.3244 0.3464 0.031*
C21 0.8500 (3) −0.12856 (18) −0.02354 (14) 0.0242 (4)
H21A 0.9156 −0.2074 −0.0029 0.036*
H21B 0.9204 −0.0900 −0.0746 0.036*
H21C 0.7333 −0.1251 −0.0467 0.036*
C22 0.6465 (3) 0.11405 (17) −0.04537 (13) 0.0224 (4)
H22A 0.5839 0.1905 −0.0394 0.034*
H22B 0.5618 0.0786 −0.0646 0.034*
H22C 0.7458 0.1172 −0.0933 0.034*
Cl1 0.24264 (10) 0.37079 (6) 0.07683 (6) 0.05382 (19)
Cl2 0.28123 (13) 0.59955 (6) 0.06488 (7) 0.0640 (2)
C13 0.8193 (2) −0.07080 (17) 0.06089 (13) 0.0197 (4)
Cl3 0.18264 (9) 0.46457 (7) 0.24800 (5) 0.05064 (18)
C23 0.3093 (3) 0.4605 (2) 0.13651 (18) 0.0350 (5)
H23A 0.4398 0.4293 0.1499 0.042*
O3 0.6398 (2) 0.33720 (14) 0.25019 (13) 0.0431 (4)
H1O3 0.6568 0.2655 0.2858 0.065*
C24 0.8172 (3) 0.3341 (2) 0.20835 (19) 0.0389 (5)
H24A 0.8137 0.4002 0.1561 0.058*
H24B 0.8625 0.2657 0.1839 0.058*
H24C 0.8971 0.3343 0.2563 0.058*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Ni1 0.01784 (12) 0.01479 (12) 0.01401 (11) −0.00247 (8) −0.00203 (8) −0.00282 (8)
O1 0.0229 (7) 0.0177 (6) 0.0157 (6) −0.0012 (5) −0.0018 (5) −0.0041 (5)
O2 0.0332 (8) 0.0167 (7) 0.0146 (6) −0.0019 (6) −0.0026 (5) −0.0038 (5)
N1 0.0164 (7) 0.0154 (7) 0.0180 (7) −0.0030 (6) −0.0023 (6) −0.0030 (6)
N2 0.0164 (7) 0.0164 (7) 0.0171 (7) −0.0036 (6) −0.0023 (5) −0.0019 (6)
C1 0.0160 (8) 0.0185 (9) 0.0183 (8) −0.0049 (7) −0.0010 (6) −0.0050 (7)
C2 0.0204 (9) 0.0185 (9) 0.0178 (8) −0.0042 (7) −0.0025 (7) −0.0022 (7)
C3 0.0179 (8) 0.0187 (9) 0.0231 (9) −0.0053 (7) −0.0001 (7) −0.0051 (7)
C4 0.0172 (9) 0.0225 (9) 0.0205 (9) −0.0041 (7) 0.0005 (7) −0.0075 (7)
C5 0.0173 (8) 0.0230 (9) 0.0174 (8) −0.0036 (7) −0.0010 (6) −0.0047 (7)
C6 0.0163 (8) 0.0184 (9) 0.0179 (8) −0.0039 (7) −0.0010 (6) −0.0043 (7)
C7 0.0154 (8) 0.0203 (9) 0.0172 (8) −0.0046 (7) −0.0011 (6) −0.0022 (7)
C8 0.0217 (9) 0.0168 (9) 0.0179 (8) −0.0025 (7) −0.0034 (7) −0.0017 (7)
C9 0.0207 (9) 0.0181 (9) 0.0172 (8) −0.0019 (7) −0.0037 (7) −0.0023 (7)
C10 0.0166 (8) 0.0176 (9) 0.0195 (8) −0.0055 (7) −0.0005 (6) −0.0047 (7)
C11 0.0190 (9) 0.0177 (9) 0.0170 (8) −0.0065 (7) −0.0009 (6) −0.0039 (7)
C12 0.0184 (9) 0.0181 (9) 0.0202 (9) −0.0041 (7) −0.0002 (7) −0.0065 (7)
C14 0.0161 (8) 0.0227 (9) 0.0178 (8) −0.0067 (7) −0.0001 (6) −0.0035 (7)
C15 0.0215 (9) 0.0177 (9) 0.0187 (8) −0.0033 (7) −0.0007 (7) −0.0050 (7)
C16 0.0205 (9) 0.0187 (9) 0.0170 (8) −0.0061 (7) 0.0006 (6) −0.0046 (7)
C17 0.0286 (10) 0.0197 (10) 0.0259 (10) −0.0024 (8) 0.0010 (8) −0.0053 (8)
C18 0.0299 (11) 0.0255 (10) 0.0226 (9) −0.0013 (8) −0.0010 (8) −0.0100 (8)
C19 0.0293 (10) 0.0242 (10) 0.0171 (9) −0.0005 (8) −0.0014 (7) −0.0019 (7)
C20 0.0204 (9) 0.0182 (9) 0.0228 (9) −0.0007 (7) −0.0011 (7) −0.0061 (7)
C21 0.0245 (10) 0.0292 (11) 0.0207 (9) −0.0048 (8) −0.0021 (7) −0.0107 (8)
C22 0.0237 (9) 0.0260 (10) 0.0179 (9) −0.0068 (8) −0.0010 (7) −0.0048 (7)
Cl1 0.0519 (4) 0.0516 (4) 0.0728 (5) −0.0196 (3) 0.0068 (3) −0.0386 (4)
Cl2 0.0768 (6) 0.0307 (4) 0.0800 (6) −0.0115 (3) −0.0152 (4) −0.0009 (4)
C13 0.0176 (8) 0.0250 (10) 0.0189 (8) −0.0074 (7) 0.0020 (7) −0.0085 (7)
Cl3 0.0402 (4) 0.0571 (4) 0.0579 (4) −0.0051 (3) 0.0034 (3) −0.0290 (3)
C23 0.0320 (12) 0.0268 (11) 0.0483 (14) −0.0049 (9) −0.0056 (10) −0.0131 (10)
O3 0.0401 (10) 0.0246 (8) 0.0521 (11) −0.0019 (7) −0.0001 (8) 0.0073 (7)
C24 0.0369 (13) 0.0270 (12) 0.0498 (15) −0.0053 (10) −0.0087 (11) −0.0028 (11)

Geometric parameters (Å, °)

Ni1—O2 1.8276 (13) C14—C15 1.383 (3)
Ni1—O1 1.8298 (13) C14—C13 1.409 (3)
Ni1—N1 1.8534 (15) C14—C22 1.506 (3)
Ni1—N2 1.8592 (16) C15—C16 1.414 (3)
O1—C1 1.314 (2) C15—H15A 0.9300
O2—C16 1.317 (2) C17—H17A 0.9600
N1—C7 1.311 (2) C17—H17B 0.9600
N1—C8 1.475 (2) C17—H17C 0.9600
N2—C10 1.310 (2) C18—H18A 0.9600
N2—C9 1.469 (2) C18—H18B 0.9600
C1—C2 1.413 (3) C18—H18C 0.9600
C1—C6 1.418 (2) C19—H19A 0.9600
C2—C3 1.382 (3) C19—H19B 0.9600
C2—H2A 0.9300 C19—H19C 0.9600
C3—C4 1.416 (3) C20—H20A 0.9600
C3—C17 1.506 (3) C20—H20B 0.9600
C4—C5 1.374 (3) C20—H20C 0.9600
C4—C18 1.509 (3) C21—C13 1.511 (3)
C5—C6 1.419 (3) C21—H21A 0.9600
C5—H5A 0.9300 C21—H21B 0.9600
C6—C7 1.454 (3) C21—H21C 0.9600
C7—C19 1.510 (2) C22—H22A 0.9600
C8—C9 1.514 (3) C22—H22B 0.9600
C8—H8A 0.9700 C22—H22C 0.9600
C8—H8B 0.9700 Cl1—C23 1.749 (2)
C9—H9A 0.9700 Cl2—C23 1.748 (3)
C9—H9B 0.9700 Cl3—C23 1.767 (3)
C10—C11 1.457 (3) C23—H23A 0.9800
C10—C20 1.502 (3) O3—C24 1.400 (3)
C11—C16 1.411 (3) O3—H1O3 0.8931
C11—C12 1.422 (2) C24—H24A 0.9600
C12—C13 1.374 (3) C24—H24B 0.9600
C12—H12A 0.9300 C24—H24C 0.9600
Ni1···Ni1 i 4.1276 (3) Ni1···Ni1 ii 4.5626 (3)
O2—Ni1—O1 82.98 (6) C14—C15—C16 122.47 (18)
O2—Ni1—N1 177.05 (6) C14—C15—H15A 118.8
O1—Ni1—N1 94.26 (6) C16—C15—H15A 118.8
O2—Ni1—N2 93.94 (6) O2—C16—C11 124.29 (16)
O1—Ni1—N2 176.90 (6) O2—C16—C15 117.16 (17)
N1—Ni1—N2 88.82 (7) C11—C16—C15 118.55 (17)
C1—O1—Ni1 127.77 (12) C3—C17—H17A 109.5
C16—O2—Ni1 126.95 (12) C3—C17—H17B 109.5
C7—N1—C8 117.97 (15) H17A—C17—H17B 109.5
C7—N1—Ni1 129.48 (13) C3—C17—H17C 109.5
C8—N1—Ni1 112.23 (11) H17A—C17—H17C 109.5
C10—N2—C9 119.07 (16) H17B—C17—H17C 109.5
C10—N2—Ni1 128.89 (13) C4—C18—H18A 109.5
C9—N2—Ni1 111.81 (12) C4—C18—H18B 109.5
O1—C1—C2 116.60 (16) H18A—C18—H18B 109.5
O1—C1—C6 124.99 (17) C4—C18—H18C 109.5
C2—C1—C6 118.41 (16) H18A—C18—H18C 109.5
C3—C2—C1 122.95 (17) H18B—C18—H18C 109.5
C3—C2—H2A 118.5 C7—C19—H19A 109.5
C1—C2—H2A 118.5 C7—C19—H19B 109.5
C2—C3—C4 119.06 (18) H19A—C19—H19B 109.5
C2—C3—C17 120.45 (17) C7—C19—H19C 109.5
C4—C3—C17 120.50 (17) H19A—C19—H19C 109.5
C5—C4—C3 118.32 (17) H19B—C19—H19C 109.5
C5—C4—C18 120.77 (17) C10—C20—H20A 109.5
C3—C4—C18 120.90 (17) C10—C20—H20B 109.5
C4—C5—C6 124.01 (17) H20A—C20—H20B 109.5
C4—C5—H5A 118.0 C10—C20—H20C 109.5
C6—C5—H5A 118.0 H20A—C20—H20C 109.5
C1—C6—C5 117.21 (17) H20B—C20—H20C 109.5
C1—C6—C7 121.60 (16) C13—C21—H21A 109.5
C5—C6—C7 121.19 (16) C13—C21—H21B 109.5
N1—C7—C6 121.70 (16) H21A—C21—H21B 109.5
N1—C7—C19 118.56 (17) C13—C21—H21C 109.5
C6—C7—C19 119.73 (16) H21A—C21—H21C 109.5
N1—C8—C9 109.21 (15) H21B—C21—H21C 109.5
N1—C8—H8A 109.8 C14—C22—H22A 109.5
C9—C8—H8A 109.8 C14—C22—H22B 109.5
N1—C8—H8B 109.8 H22A—C22—H22B 109.5
C9—C8—H8B 109.8 C14—C22—H22C 109.5
H8A—C8—H8B 108.3 H22A—C22—H22C 109.5
N2—C9—C8 109.27 (15) H22B—C22—H22C 109.5
N2—C9—H9A 109.8 C12—C13—C14 118.70 (17)
C8—C9—H9A 109.8 C12—C13—C21 120.37 (18)
N2—C9—H9B 109.8 C14—C13—C21 120.92 (17)
C8—C9—H9B 109.8 Cl2—C23—Cl1 111.33 (14)
H9A—C9—H9B 108.3 Cl2—C23—Cl3 109.86 (13)
N2—C10—C11 121.32 (17) Cl1—C23—Cl3 110.63 (13)
N2—C10—C20 119.63 (16) Cl2—C23—H23A 108.3
C11—C10—C20 119.06 (16) Cl1—C23—H23A 108.3
C16—C11—C12 117.64 (16) Cl3—C23—H23A 108.3
C16—C11—C10 121.81 (16) C24—O3—H1O3 100.3
C12—C11—C10 120.55 (17) O3—C24—H24A 109.5
C13—C12—C11 123.29 (18) O3—C24—H24B 109.5
C13—C12—H12A 118.4 H24A—C24—H24B 109.5
C11—C12—H12A 118.4 O3—C24—H24C 109.5
C15—C14—C13 119.34 (17) H24A—C24—H24C 109.5
C15—C14—C22 120.14 (18) H24B—C24—H24C 109.5
C13—C14—C22 120.52 (17)
O2—Ni1—O1—C1 −175.67 (15) C5—C6—C7—N1 −175.42 (17)
N1—Ni1—O1—C1 3.28 (15) C1—C6—C7—C19 −175.21 (17)
O1—Ni1—O2—C16 −163.17 (16) C5—C6—C7—C19 4.6 (3)
N2—Ni1—O2—C16 17.21 (16) C7—N1—C8—C9 −162.36 (16)
O1—Ni1—N1—C7 −0.21 (17) Ni1—N1—C8—C9 23.57 (18)
N2—Ni1—N1—C7 179.36 (16) C10—N2—C9—C8 −158.37 (16)
O1—Ni1—N1—C8 173.00 (12) Ni1—N2—C9—C8 26.54 (18)
N2—Ni1—N1—C8 −7.43 (12) N1—C8—C9—N2 −31.8 (2)
O2—Ni1—N2—C10 −6.81 (16) C9—N2—C10—C11 −179.55 (15)
N1—Ni1—N2—C10 174.26 (16) Ni1—N2—C10—C11 −5.4 (3)
O2—Ni1—N2—C9 167.68 (12) C9—N2—C10—C20 0.9 (2)
N1—Ni1—N2—C9 −11.26 (12) Ni1—N2—C10—C20 175.00 (12)
Ni1—O1—C1—C2 177.47 (12) N2—C10—C11—C16 11.8 (3)
Ni1—O1—C1—C6 −2.7 (3) C20—C10—C11—C16 −168.63 (16)
O1—C1—C2—C3 −178.80 (16) N2—C10—C11—C12 −167.88 (16)
C6—C1—C2—C3 1.3 (3) C20—C10—C11—C12 11.7 (2)
C1—C2—C3—C4 0.5 (3) C16—C11—C12—C13 0.3 (3)
C1—C2—C3—C17 −179.93 (17) C10—C11—C12—C13 179.94 (17)
C2—C3—C4—C5 −1.9 (3) C13—C14—C15—C16 −0.1 (3)
C17—C3—C4—C5 178.57 (17) C22—C14—C15—C16 179.49 (17)
C2—C3—C4—C18 177.35 (17) Ni1—O2—C16—C11 −15.6 (3)
C17—C3—C4—C18 −2.2 (3) Ni1—O2—C16—C15 164.22 (13)
C3—C4—C5—C6 1.5 (3) C12—C11—C16—O2 178.46 (16)
C18—C4—C5—C6 −177.74 (17) C10—C11—C16—O2 −1.2 (3)
O1—C1—C6—C5 178.44 (16) C12—C11—C16—C15 −1.4 (3)
C2—C1—C6—C5 −1.7 (2) C10—C11—C16—C15 178.98 (16)
O1—C1—C6—C7 −1.8 (3) C14—C15—C16—O2 −178.51 (17)
C2—C1—C6—C7 178.11 (16) C14—C15—C16—C11 1.3 (3)
C4—C5—C6—C1 0.3 (3) C11—C12—C13—C14 0.9 (3)
C4—C5—C6—C7 −179.48 (17) C11—C12—C13—C21 −179.10 (17)
C8—N1—C7—C6 −176.32 (15) C15—C14—C13—C12 −1.0 (3)
Ni1—N1—C7—C6 −3.4 (3) C22—C14—C13—C12 179.41 (16)
C8—N1—C7—C19 3.7 (2) C15—C14—C13—C21 179.03 (17)
Ni1—N1—C7—C19 176.56 (13) C22—C14—C13—C21 −0.6 (3)
C1—C6—C7—N1 4.8 (3)

Symmetry codes: (i) − x+1, − y, − z+1; (ii) − x+2, − y, − z+1.

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
O3—H1O3···O1 0.89 2.23 2.980 (2) 142
O3—H1O3···O2 0.89 2.10 2.901 (2) 149
C23—H23A···O3 0.98 2.10 2.974 (3) 148
C9—H9A···Cg1 ii 0.97 2.47 3.404 (2) 162
C20—H20A···Cg2 ii 0.96 2.94 3.801 (2) 150
C21—H21B···Cg3 iii 0.96 2.82 3.691 (2) 152

Symmetry codes: (ii) − x+2, − y, − z+1; (iii) − x+2, − y, − z.

References

1  

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

2  

Blower, P. J. (1998). Transition Met. Chem. 23, 109–112.

3  

Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.

4  

Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, 223–226.

5  

Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, 823–829.

6  

Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, 396–399.

7  

Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C 56, 423–424.

8  

Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.

9  

Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.

10  

Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.

11  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

12  

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Figures and Tables

Table 1

Selected geometric parameters (Å, °)

Ni1—O2 1.8276 (13)
Ni1—O1 1.8298 (13)
Ni1—N1 1.8534 (15)
Ni1—N2 1.8592 (16)
Ni1⋯Ni1 i 4.1276 (3)
Ni1⋯Ni1 ii 4.5626 (3)
O2—Ni1—O1 82.98 (6)
O2—Ni1—N1 177.05 (6)
O1—Ni1—N1 94.26 (6)
O2—Ni1—N2 93.94 (6)
O1—Ni1—N2 176.90 (6)
N1—Ni1—N2 88.82 (7)

Symmetry codes: (i) e-64-m1116-efi2.jpg ; (ii) e-64-m1116-efi3.jpg .

Table 2

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
O3—H1 O3⋯O1 0.89 2.23 2.980 (2) 142
O3—H1 O3⋯O2 0.89 2.10 2.901 (2) 149
C23—H23 A⋯O3 0.98 2.10 2.974 (3) 148
C9—H9 ACg1 ii 0.97 2.47 3.404 (2) 162
C20—H20 ACg2 ii 0.96 2.94 3.801 (2) 150
C21—H21 BCg3 iii 0.96 2.82 3.691 (2) 152

Symmetry codes: (ii) e-64-m1116-efi3.jpg ; (iii) e-64-m1116-efi5.jpg . Cg1, Cg2 and Cg3 are the centroids of the Ni1/O1/C1/C6/C7/N1, C1–C6, and C11–C16 rings, respectively.