1-Cyclo­pentyl­idene-2-(2,4-dinitro­phenyl)­hydrazine

Ji, Ning-Ning a * Shi, Zhi-Qiang b [a ] Department of Chemistry, Taishan University, 271021 Taian, Shandong, People’s Republic of China [b ] Department of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People’s Republic of China

Abstract

The title compound, C 11H 12N 4O 4, was synthesized by the reaction of (2,4-dinitro­phen­yl)hydrazine with cyclo­penta­none. The cyclo­pentyl fragment is disordered over two sites with occupancies of 0.63 (1) and 0.37 (1). An intra­molecular N—H⋯O hydrogen bond helps to establish the conformation. Pairs of mol­ecules are held together by π–π inter­actions between adjacent benzene rings [centroid-to-centroid distance 3.589 (2) Å].

Related literature

For background literature on Schiff bases, see: Liang (2007 ). For information on the properties of dinitro­phenyl­hydrazones, see: Baughman et al. (2004 ); Zare et al. (2005 ); El-Seify & El-Dossoki (2006 ); Kim & Yoon (1998 ). For bond-length data, see: Allen et al. (1987 ); Allen (2002 ). e-64-o2141-scheme1.jpg

Experimental

Crystal data

  • C 11H 12N 4O 4

  • M r = 264.25

  • Monoclinic, e-64-o2141-efi1.jpg

  • a = 6.962 (3) Å

  • b = 21.840 (10) Å

  • c = 8.162 (4) Å

  • β = 98.528 (9)°

  • V = 1227.3 (10) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm −1

  • T = 295 (2) K

  • 0.15 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan ( SADABS; Sheldrick, 1996 ) T min = 0.984, T max = 0.993

  • 6423 measured reflections

  • 2168 independent reflections

  • 1353 reflections with I > 2σ( I)

  • R int = 0.029

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.042

  • wR( F 2) = 0.129

  • S = 1.02

  • 2168 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρ max = 0.13 e Å −3

  • Δρ min = −0.14 e Å −3

Data collection: SMART (Bruker, 2003 ); cell refinement: SAINT (Bruker, 2003 ); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: SHELXTL (Sheldrick, 2008 ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033345/fb2114sup1.cif

e-64-o2141-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033345/fb2114Isup2.hkl

e-64-o2141-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2114).

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y06-2-08).

Appendices

supplementary crystallographic information

Comment

Schiff bases and their complexes are widely used in the fields of biology, catalysis etc. (Liang, 2007). Especially, the dinitrophenylhydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004). The benzophenone-2,4-dinitrophenylhydrazone derivatives are important because of their significant molecular nonlinearities and remarkable ability to crystallize in non-centrosymmetric crystal systems (Zare et al., 2005; El-Seify & El-Dossoki, 2006; Kim & Yoon, 1998). In order to search for new dinitrophenylhydrazones, the title compound was synthesized and its crystal structure is reported here (Fig. 1). The obtained unrestrained bond lengths and angles are in good agreement with the expected values (Allen et al., 1987) in the non-disordered region. In the crystal structure (Fig. 2), the molecules are stabilized by N—H···O hydrogen bonds (Table 1), C—H···N interactions (C6—H6···N4: 0.93, 2.39, 2.722 (3) Å and 101.1°) and by π–π electron interactions between the benzene rings. The distances between the centroids of the stacked benzene rings are 3.589 (2) Å though the molecules are situated in rather equidistant planes.

Experimental

The title compound was synthesized by the reaction of (2,4-dinitro-phenyl)-hydrazine (1 mmol, 198.1 mg) with cyclopentanone (1 mmol, 84.1 mg) in ethanol (30 ml) under reflux conditions (348 K) for 3 h. The solvent was removed and the solid product was recrystallized from tetrahydrofuran. Brown crystals that were suitable for X-ray diffraction study were grown in the course of three days. Yield, 227.2 mg, 86%; m. p. 318–320 K.

Analysis calculated for C 11H 12N 4O 4: C 50.00, H 4.58, N 21.20%; found: C 49.97, H 4.52, N 21.15%.

Refinement

All the H atoms except those attached to the disordered atoms C9, C9', C10 and C10' could have been distinguished in the difference electron density maps. During the refinement the H atoms were situated into idealized positions, constrained and refined as riding atoms. The constraints: C aryl—H = 0.93; C methylene—H 0.97 Å, N—H = 0.86 Å; U iso(H) = 1.2 U eq(carrier atom). The disorder was treated with the following restraints: The distances C9—C10 and C9'—C10' were restrained to 1.485 (10) Å, the distances C8—C9, C8—C9', C10—C11 and C10'—C11 to 1.520 (10) Å and the distances C7—C8, C7—C11 to 1.503 (10) Å. The values of these distances were retrieved from the Cambridge Crystal Structure Database (version 5.29 plus updates to January 2008; Allen, 2002) for the structures that contained the fragment —NH—N ═cyclopentyl that is present in the title structure. The retrieved structures HULJON, KERWUA, NAQSAZ and RAKHUH are without disorder, errors and with the R-factor < 0.05. The displacement parameters of the atoms C9', C10', C9' and C10' were restrained by the command SIMU with the default parameters (0.04, 0.08, 1.7) of the refinement program SHELXL97 (Sheldrick, 2008).

Figures

Fig. 1.

The title molecular with displacement ellipsoids drawn at the 50% probability level.

The title molecular with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.

The view of the structure. The dashed lines indicate the N—H···O hydrogen bonds and C—H···N interactions as well as π–π ring electron interactions.

The view of the structure. The dashed lines indicate the N—H···O hydrogen bonds and C—H···N interactions as well as π–π ring electron interactions.

Crystal data

C 11H 12N 4O 4 F(000) = 552
M r = 264.25 D x = 1.430 Mg m 3
Monoclinic, P2 1/ n Melting point = 318–320 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 6.962 (3) Å Cell parameters from 1213 reflections
b = 21.84 (1) Å θ = 3.1–21.3°
c = 8.162 (4) Å µ = 0.11 mm 1
β = 98.528 (9)° T = 295 K
V = 1227.3 (10) Å 3 Block, brown
Z = 4 0.15 × 0.10 × 0.06 mm

Data collection

Bruker SMART CCD diffractometer 2168 independent reflections
Radiation source: fine-focus sealed tube 1353 reflections with I > 2σ( I)
graphite R int = 0.029
φ and ω scans θ max = 25.0°, θ min = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→8
T min = 0.984, T max = 0.993 k = −20→26
6423 measured reflections l = −9→9

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[ F 2 > 2σ( F 2)] = 0.042 H-atom parameters constrained
wR( F 2) = 0.129 w = 1/[σ 2( F o 2) + (0.0582 P) 2 + 0.1369 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.02 (Δ/σ) max < 0.001
2168 reflections Δρ max = 0.13 e Å 3
192 parameters Δρ min = −0.14 e Å 3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc *=kFc[1+0.001xFc 2λ 3/sin(2θ)] -1/4
64 constraints Extinction coefficient: 0.008 (2)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq Occ. (<1)
O1 0.7332 (3) −0.13258 (8) 0.3023 (2) 0.0970 (6)
O2 0.6598 (2) −0.04170 (8) 0.3749 (2) 0.0883 (6)
O3 1.2739 (3) −0.17276 (10) 0.0323 (3) 0.1106 (7)
O4 1.4641 (3) −0.09968 (8) −0.0180 (2) 0.0979 (6)
N1 0.7661 (3) −0.07782 (10) 0.3142 (2) 0.0715 (5)
N2 1.3231 (3) −0.11920 (11) 0.0400 (2) 0.0802 (6)
N3 0.8813 (2) 0.05130 (8) 0.3322 (2) 0.0643 (5)
H3 0.7731 0.0416 0.3643 0.077*
N4 0.9487 (3) 0.11105 (8) 0.3468 (2) 0.0716 (5)
C1 0.9877 (3) 0.00874 (9) 0.2673 (2) 0.0563 (5)
C2 0.9367 (3) −0.05376 (9) 0.2535 (2) 0.0583 (5)
C3 1.0473 (3) −0.09546 (10) 0.1801 (2) 0.0641 (6)
H3A 1.0114 −0.1365 0.1717 0.077*
C4 1.2096 (3) −0.07577 (10) 0.1204 (2) 0.0634 (6)
C5 1.2658 (3) −0.01508 (10) 0.1343 (3) 0.0653 (6)
H5 1.3777 −0.0024 0.0944 0.078*
C6 1.1586 (3) 0.02600 (10) 0.2058 (3) 0.0631 (6)
H6 1.1986 0.0666 0.2145 0.076*
C7 0.8305 (3) 0.15004 (10) 0.3923 (3) 0.0690 (6)
C8 0.6290 (3) 0.14145 (10) 0.4287 (3) 0.0785 (7)
H8A 0.6292 0.1186 0.5306 0.094*
H8B 0.5503 0.1197 0.3391 0.094*
C9 0.5515 (8) 0.2067 (3) 0.4458 (10) 0.0954 (16) 0.631 (10)
H9A 0.4572 0.2078 0.5221 0.114* 0.631 (10)
H9B 0.4921 0.2227 0.3393 0.114* 0.631 (10)
C10 0.7337 (8) 0.2425 (3) 0.5134 (10) 0.0972 (15) 0.631 (10)
H10A 0.7157 0.2860 0.4924 0.117* 0.631 (10)
H10B 0.7690 0.2360 0.6316 0.117* 0.631 (10)
C10' 0.7036 (14) 0.2469 (4) 0.4218 (16) 0.090 (2) 0.369 (10)
H10C 0.6345 0.2536 0.3111 0.108* 0.369 (10)
H10D 0.7224 0.2859 0.4788 0.108* 0.369 (10)
C9' 0.5961 (19) 0.2020 (4) 0.5176 (14) 0.087 (2) 0.369 (10)
H9'1 0.4591 0.2119 0.5080 0.105* 0.369 (10)
H9'2 0.6518 0.2006 0.6337 0.105* 0.369 (10)
C11 0.8888 (4) 0.21600 (11) 0.4170 (4) 0.0979 (8)
H11A 0.8868 0.2367 0.3116 0.117*
H11B 1.0176 0.2196 0.4805 0.117*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
O1 0.0998 (14) 0.0748 (12) 0.1191 (15) −0.0291 (10) 0.0247 (11) 0.0028 (10)
O2 0.0678 (11) 0.0882 (12) 0.1131 (14) −0.0079 (9) 0.0276 (10) 0.0071 (10)
O3 0.1313 (17) 0.0738 (12) 0.1310 (17) 0.0164 (11) 0.0340 (13) −0.0039 (11)
O4 0.0988 (14) 0.1102 (14) 0.0911 (13) 0.0162 (11) 0.0353 (11) 0.0015 (11)
N1 0.0660 (13) 0.0744 (14) 0.0725 (13) −0.0132 (11) 0.0047 (10) 0.0104 (10)
N2 0.0869 (15) 0.0837 (16) 0.0694 (13) 0.0160 (13) 0.0095 (11) 0.0062 (11)
N3 0.0584 (11) 0.0658 (11) 0.0695 (12) −0.0059 (9) 0.0124 (9) 0.0045 (9)
N4 0.0675 (12) 0.0604 (11) 0.0879 (14) −0.0060 (10) 0.0151 (10) 0.0050 (10)
C1 0.0544 (12) 0.0634 (12) 0.0494 (11) −0.0002 (10) 0.0019 (9) 0.0087 (9)
C2 0.0562 (12) 0.0630 (12) 0.0535 (11) −0.0059 (10) 0.0011 (9) 0.0108 (10)
C3 0.0697 (14) 0.0613 (13) 0.0575 (12) −0.0040 (11) −0.0025 (11) 0.0099 (10)
C4 0.0685 (14) 0.0646 (13) 0.0555 (12) 0.0088 (11) 0.0032 (10) 0.0091 (10)
C5 0.0593 (12) 0.0761 (14) 0.0610 (13) −0.0003 (11) 0.0104 (10) 0.0106 (11)
C6 0.0625 (13) 0.0638 (13) 0.0626 (13) −0.0067 (10) 0.0080 (11) 0.0077 (10)
C7 0.0733 (14) 0.0660 (13) 0.0688 (14) −0.0015 (12) 0.0145 (11) 0.0070 (11)
C8 0.0805 (16) 0.0807 (15) 0.0784 (15) −0.0003 (12) 0.0254 (12) 0.0018 (12)
C9 0.104 (3) 0.095 (3) 0.093 (3) 0.023 (2) 0.030 (3) 0.011 (3)
C10 0.118 (3) 0.076 (3) 0.098 (3) 0.011 (2) 0.016 (3) 0.002 (3)
C10' 0.110 (4) 0.066 (3) 0.094 (4) 0.012 (3) 0.016 (4) 0.007 (4)
C9' 0.095 (4) 0.080 (3) 0.090 (4) 0.010 (3) 0.026 (4) 0.007 (4)
C11 0.1034 (19) 0.0699 (15) 0.123 (2) −0.0041 (14) 0.0257 (16) 0.0030 (14)

Geometric parameters (Å, °)

O1—N1 1.219 (2) C7—C11 1.502 (3)
O2—N1 1.234 (2) C8—C9 1.538 (6)
O3—N2 1.218 (2) C8—C9' 1.542 (10)
O4—N2 1.227 (3) C8—H8A 0.9700
N1—C2 1.452 (3) C8—H8B 0.9700
N2—C4 1.453 (3) C9—C10 1.522 (7)
N3—C1 1.345 (3) C9—H9A 0.9700
N3—N4 1.386 (2) C9—H9B 0.9700
N3—H3 0.8600 C10—C11 1.540 (6)
N4—C7 1.277 (3) C10—H10A 0.9700
C1—C6 1.409 (3) C10—H10B 0.9700
C1—C2 1.411 (3) C10'—C11 1.461 (9)
C2—C3 1.385 (3) C10'—C9' 1.519 (2)
C3—C4 1.364 (3) C10'—H10C 0.9700
C3—H3A 0.9300 C10'—H10D 0.9700
C4—C5 1.382 (3) C9'—H9'1 0.9700
C5—C6 1.354 (3) C9'—H9'2 0.9700
C5—H5 0.9300 C11—H11A 0.9700
C6—H6 0.9300 C11—H11B 0.9700
C7—C8 1.488 (3)
O1—N1—O2 122.8 (2) C9—C8—H8B 110.8
O1—N1—C2 118.8 (2) C9'—C8—H8B 131.9
O2—N1—C2 118.38 (19) H8A—C8—H8B 108.9
O3—N2—O4 123.3 (2) C8—C9—C10 102.9 (5)
O3—N2—C4 118.9 (2) C8—C9—H9A 111.2
O4—N2—C4 117.9 (2) C10—C9—H9A 111.2
C1—N3—N4 119.05 (18) C8—C9—H9B 111.2
C1—N3—H3 120.5 C10—C9—H9B 111.2
N4—N3—H3 120.5 H9A—C9—H9B 109.1
C7—N4—N3 115.38 (19) C11—C10—C9 103.4 (5)
N3—C1—C6 119.90 (19) C11—C10—H10A 111.1
N3—C1—C2 123.60 (19) C9—C10—H10A 111.1
C6—C1—C2 116.5 (2) C11—C10—H10B 111.1
C3—C2—C1 121.43 (19) C9—C10—H10B 111.1
C3—C2—N1 116.4 (2) H10A—C10—H10B 109.0
C1—C2—N1 122.1 (2) C11—C10'—C9' 102.7 (7)
C4—C3—C2 119.3 (2) C11—C10'—H10C 111.2
C4—C3—H3A 120.3 C9'—C10'—H10C 111.2
C2—C3—H3A 120.3 C11—C10'—H10D 111.2
C3—C4—C5 120.8 (2) C9'—C10'—H10D 111.2
C3—C4—N2 119.4 (2) H10C—C10'—H10D 109.1
C5—C4—N2 119.8 (2) C10'—C9'—C8 101.1 (7)
C6—C5—C4 120.2 (2) C10'—C9'—H9'1 111.5
C6—C5—H5 119.9 C8—C9'—H9'1 111.5
C4—C5—H5 119.9 C10'—C9'—H9'2 111.5
C5—C6—C1 121.7 (2) C8—C9'—H9'2 111.5
C5—C6—H6 119.2 H9'1—C9'—H9'2 109.4
C1—C6—H6 119.2 C10'—C11—C7 103.0 (4)
N4—C7—C8 129.9 (2) C7—C11—C10 103.5 (3)
N4—C7—C11 120.4 (2) C10'—C11—H11A 85.0
C8—C7—C11 109.8 (2) C7—C11—H11A 111.1
C7—C8—C9 104.8 (3) C10—C11—H11A 111.1
C7—C8—C9' 101.3 (4) C10'—C11—H11B 134.2
C7—C8—H8A 110.8 C7—C11—H11B 111.1
C9—C8—H8A 110.8 C10—C11—H11B 111.1
C9'—C8—H8A 91.1 H11A—C11—H11B 109.0
C7—C8—H8B 110.8

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
N3—H3···O2 0.86 1.99 2.605 (2) 128

References

1  

Allen, F. H. (2002). Acta Cryst. B 58, 380–388.

2  

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

3  

Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C 60, o103–o106.

4  

Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.

5  

El-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99–106.

6  

Kim, S. Y. & Yoon, N. M. (1998). Bull. Korean Chem. Soc. 19, 891–893.

7  

Liang, Z.-P. (2007). Acta Cryst. E 63, o2943.

8  

Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.

9  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

10  

Zare, H. R., Ardakani, M. M., Nasirizadah, N. & Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51–56.

Figures and Tables

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
N3—H3⋯O2 0.86 1.99 2.605 (2) 128