Aqua­tricarbon­yl(4-carboxy­pyridine-2-carboxyl­ato-κ 2 N, O 2)rhenium(I)

Schutte, Marietjie a Visser, Hendrik G. a * [a ] Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Abstract

There are two mol­ecules with similar bond dimensions in the asymmetric unit of the title complex, [Re(C 7H 4NO 4)(CO) 3(H 2O)]. The metal centre is coordinated facially by three carbonyl groups, is chelated by a 4-carboxy­pyridine-2-carboxyl­ate ligand and is also coordinated by a water mol­ecule. O—H⋯O hydrogen bonds give rise to a three-dimensional network.

Related literature

For the monoclinic polymorph of the title compound, see: Mundwiler et al. (2004 ). For related structures, see: Kemp (2006 ); Roodt et al. (2003 ); Schutte et al. (2007 ); Wang et al. (2003 ); Alvarez et al. (2007 ). For the synthesis of the precursor, see: Alberto et al. (1996 ); e-64-m1226-scheme1.jpg

Experimental

Crystal data

  • [Re(C 7H 4NO 4)(CO) 3(H 2O)]

  • M r = 454.37

  • Triclinic, e-64-m1226-efi1.jpg

  • a = 9.5024 (11) Å

  • b = 12.4254 (16) Å

  • c = 12.4889 (16) Å

  • α = 101.799 (4)°

  • β = 107.943 (4)°

  • γ = 111.346 (4)°

  • V = 1220.4 (3) Å 3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.00 mm −1

  • T = 100 (2) K

  • 0.27 × 0.17 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan ( SADABS; Bruker, 2004 ) T min = 0.140, T max = 0.605

  • 15096 measured reflections

  • 5848 independent reflections

  • 4869 reflections with I > 2σ( I)

  • R int = 0.037

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.026

  • wR( F 2) = 0.065

  • S = 1.05

  • 5848 reflections

  • 373 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρ max = 1.21 e Å −3

  • Δρ min = −1.80 e Å −3

Data collection: APEX2 (Bruker, 2005 ); cell refinement: SAINT-Plus (Bruker, 2004 ); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: DIAMOND (Brandenberg & Putz, 2005 ) and ORTEP-3 (Farrugia, 1999 ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802761X/ng2479sup1.cif

e-64-m1226-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802761X/ng2479Isup2.hkl

e-64-m1226-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2479).

Acknowledgements

The University of the Free State and Professor A. Roodt are gratefully aknowledged for financial support. Dr A.J. Muller is kindly acknowledged for the data collection.

Appendices

supplementary crystallographic information

Comment

The title compound, Re(C 10H 6NO 8),is one of many Re(I)-tricarbonyl complexes currently under investigation in the field of radiopharmacology. One polymorph of the title compound was reported earlier [Mundwiler et al., (2004)].

The Re(I) core is coordinated by three facial carbonyl groups, one pyridine-2-carboxylato-4-carboxylic acid ligand and a water molecule. A slightly distorted octahedral geometry around the Re(I) metal centre is observed, possibly due to the effect of the small bite angles of 74.78 (14)° and 74.98 (12)° respectively for the two pyridine-2,4-dicarboxylic acid units. The Re—OH 2 bond distances of 2.153 (4) Å and 2.170 (4) Å compare well with related structures [Mundwiler et al., (2004) and Kemp, (2006)] of 2.198 (5) Å and 2.192 (4) Å. The Re—CO distances are well within the normal range, 1.883 (6) Å to 1.947 (6) Å. The crystal structure shows a range of hydrogen bonding of the types OH—O and CH—O thereby forming a 3D polymeric network, with DA distances ranging from 2.595 (4) Å to 3.426 (5) Å.

Experimental

[NEt 4] 2[Re(CO) 3Br 3] (300 mg, 0.389 mmol), as prepared by Alberto et al. (1996) was stirred in 40 ml of water at pH 2.2 for 20 minutes until dissolved. AgNO 3 (198 mg, 1.167 mmol) was added to the solution and stirred for 24 h at room temperature. The precipitate, AgBr, was filtered off and weighed(0.220 g). 2,4-Pyridinedicarboxylic acid (65 mg, 0.389 mmol) was added to the filtrate as a solid and stirred for 36 h. The solution turned bright yellow with a light yellow precipitate. The product was filtered off, dried and weighed. Crystals were obtained by slow evaporation of the filtrate. (Yield: 0.240 g, 68%).

Refinement

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with U<i/> iso(H) = 1.2U<i/> eq(C). The highest electron density lies within 1.14 Å from Re1. The hydrogen atoms of the coordinated water molecules were determined from a difference Fourier map and their positional parameters freely refined with U<i/> iso(H) = 1.5U<i/> eq(O).

Figures

Fig. 1.

Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).

Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).

Crystal data

[Re(C 7H 4NO 4)(CO) 3(H 2O)] Z = 4
M r = 454.37 F(000) = 848.0
Triclinic, P1 D x = 2.473 Mg m 3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5024 (11) Å Cell parameters from 7140 reflections
b = 12.4254 (16) Å θ = 2.8–28.3°
c = 12.4889 (16) Å µ = 10.00 mm 1
α = 101.799 (4)° T = 100 K
β = 107.943 (4)° Plate, yellow
γ = 111.346 (4)° 0.27 × 0.17 × 0.05 mm
V = 1220.4 (3) Å 3

Data collection

Bruker APEX diffractometer 4869 reflections with I > 2σ( I)
φ and ω scans R int = 0.037
Absorption correction: multi-scan (SADABS; Bruker, 2004) θ max = 28.3°, θ min = 1.8°
T min = 0.140, T max = 0.605 h = −12→12
15096 measured reflections k = −16→15
5048 independent reflections l = −16→16

Refinement

Refinement on F 2 7 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[ F 2 > 2σ( F 2)] = 0.027 w = 1/[σ 2( F o 2) + (0.0251 P) 2] where P = ( F o 2 + 2 F c 2)/3
wR( F 2) = 0.065 (Δ/σ) max = 0.015
S = 1.05 Δρ max = 1.21 e Å 3
5848 reflections Δρ min = −1.80 e Å 3
373 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
N1 0.3078 (4) 0.2654 (3) 0.5400 (3) 0.0095 (8)
O5 0.1030 (4) 0.1933 (3) 0.3130 (2) 0.0113 (7)
O6 0.2391 (4) 0.1072 (3) 0.2433 (3) 0.0152 (7)
C4 0.2193 (6) 0.1635 (4) 0.3289 (4) 0.0116 (9)
O15 0.0841 (4) 0.2152 (3) −0.1450 (3) 0.0112 (7)
C5 0.3392 (6) 0.1998 (4) 0.4572 (4) 0.0102 (9)
O16 0.0735 (4) 0.0827 (3) −0.3002 (3) 0.0160 (7)
C15 0.3019 (5) 0.1585 (4) −0.1099 (4) 0.0097 (9)
C14 0.1407 (6) 0.1487 (4) −0.1934 (4) 0.0118 (10)
C18 0.5968 (5) 0.1949 (4) 0.0518 (4) 0.0116 (9)
H18 0.6981 0.2089 0.1084 0.014*
C17 0.5336 (6) 0.1168 (4) −0.0662 (4) 0.0115 (9)
C16 0.3816 (5) 0.0981 (4) −0.1491 (4) 0.0106 (9)
H16 0.3358 0.0459 −0.2288 0.013*
C8 0.5409 (6) 0.2756 (4) 0.6944 (4) 0.0127 (10)
H8 0.6081 0.3019 0.7761 0.015*
C6 0.4696 (6) 0.1716 (4) 0.4875 (4) 0.0129 (10)
H6 0.4884 0.1278 0.4282 0.015*
C9 0.4082 (5) 0.3013 (4) 0.6568 (4) 0.0122 (10)
H9 0.3874 0.3453 0.7146 0.015*
C7 0.5727 (5) 0.2098 (4) 0.6085 (4) 0.0105 (9)
C20 0.6310 (6) 0.0551 (4) −0.0994 (4) 0.0131 (10)
C19 0.5084 (5) 0.2516 (4) 0.0845 (4) 0.0118 (10)
H19 0.5507 0.3031 0.1641 0.014*
N2 0.3633 (4) 0.2346 (3) 0.0051 (3) 0.0092 (8)
O8 0.7441 (4) 0.1233 (3) 0.5666 (3) 0.0200 (8)
O7 0.8100 (4) 0.2290 (3) 0.7589 (3) 0.0190 (8)
H7 0.8878 0.2118 0.773 0.029*
C10 0.7178 (5) 0.1827 (4) 0.6423 (4) 0.0134 (10)
O18 0.7570 (4) 0.0669 (3) −0.0231 (3) 0.0174 (8)
O17 0.5674 (4) −0.0113 (3) −0.2139 (3) 0.0176 (8)
H17 0.6264 −0.0424 −0.2258 0.026*
O11 0.4169 (4) 0.4220 (3) 0.3181 (3) 0.0206 (8)
O12 −0.0486 (5) 0.3985 (3) 0.0753 (3) 0.0290 (9)
C11 0.3339 (6) 0.3833 (4) 0.2154 (4) 0.0129 (10)
C12 0.0473 (6) 0.3683 (4) 0.0652 (4) 0.0165 (10)
O2 −0.2361 (5) 0.3030 (4) 0.3410 (3) 0.0296 (10)
C2 −0.1119 (6) 0.3005 (4) 0.3895 (4) 0.0178 (11)
C3 0.2069 (6) 0.4532 (5) 0.4629 (4) 0.0211 (12)
O3 0.2698 (5) 0.5484 (3) 0.4535 (3) 0.0283 (9)
C13 0.3283 (6) 0.4712 (5) 0.0407 (4) 0.0162 (10)
O13 0.4026 (4) 0.5690 (3) 0.0395 (3) 0.0209 (8)
O14 0.0791 (4) 0.1290 (3) 0.0380 (3) 0.0128 (7)
O4 −0.0362 (4) 0.1106 (3) 0.4661 (3) 0.0191 (8)
H4A −0.070 (6) 0.046 (3) 0.408 (3) 0.029*
H4B −0.092 (6) 0.097 (4) 0.508 (4) 0.029*
H14B 0.123 (5) 0.112 (5) 0.098 (3) 0.029*
H14A −0.025 (2) 0.093 (4) 0.010 (4) 0.029*
Re2 0.20999 (2) 0.315032 (16) 0.046124 (15) 0.00973 (6)
Re1 0.09158 (2) 0.296297 (16) 0.468442 (15) 0.01020 (6)
C1 0.1002 (6) 0.3789 (5) 0.6194 (4) 0.0165 (10)
O1 0.1138 (5) 0.4303 (3) 0.7126 (3) 0.0272 (9)

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
N1 0.0096 (18) 0.013 (2) 0.0088 (18) 0.0082 (16) 0.0031 (15) 0.0057 (16)
O5 0.0128 (16) 0.0157 (18) 0.0070 (15) 0.0087 (14) 0.0052 (13) 0.0014 (13)
O6 0.0183 (17) 0.0185 (19) 0.0109 (16) 0.0125 (15) 0.0057 (14) 0.0022 (14)
C4 0.016 (2) 0.013 (2) 0.013 (2) 0.010 (2) 0.0097 (19) 0.0047 (19)
O15 0.0142 (16) 0.0144 (17) 0.0063 (14) 0.0101 (14) 0.0035 (13) 0.0007 (13)
C5 0.012 (2) 0.008 (2) 0.006 (2) 0.0038 (18) 0.0014 (17) −0.0007 (17)
O16 0.0185 (18) 0.0204 (19) 0.0076 (15) 0.0131 (15) 0.0024 (13) −0.0010 (14)
C15 0.012 (2) 0.008 (2) 0.009 (2) 0.0047 (18) 0.0040 (18) 0.0034 (18)
C14 0.012 (2) 0.016 (3) 0.010 (2) 0.008 (2) 0.0044 (18) 0.0060 (19)
C18 0.006 (2) 0.017 (3) 0.009 (2) 0.0058 (19) 0.0008 (17) 0.0032 (19)
C17 0.015 (2) 0.011 (2) 0.014 (2) 0.0092 (19) 0.0085 (19) 0.0059 (19)
C16 0.011 (2) 0.010 (2) 0.008 (2) 0.0039 (19) 0.0039 (17) 0.0016 (18)
C8 0.012 (2) 0.016 (2) 0.006 (2) 0.006 (2) 0.0017 (17) 0.0023 (18)
C6 0.013 (2) 0.010 (2) 0.013 (2) 0.0028 (19) 0.0073 (19) 0.0026 (19)
C9 0.013 (2) 0.015 (2) 0.006 (2) 0.008 (2) 0.0025 (18) −0.0010 (18)
C7 0.005 (2) 0.014 (2) 0.011 (2) 0.0053 (18) 0.0015 (17) 0.0029 (19)
C20 0.012 (2) 0.014 (2) 0.016 (2) 0.008 (2) 0.0073 (19) 0.005 (2)
C19 0.010 (2) 0.014 (2) 0.008 (2) 0.0056 (19) 0.0030 (18) 0.0001 (18)
N2 0.0081 (18) 0.010 (2) 0.0085 (18) 0.0053 (16) 0.0021 (14) 0.0014 (15)
O8 0.0175 (18) 0.027 (2) 0.0152 (17) 0.0143 (16) 0.0046 (14) 0.0022 (15)
O7 0.0150 (17) 0.029 (2) 0.0117 (16) 0.0145 (16) 0.0008 (14) 0.0025 (15)
C10 0.006 (2) 0.017 (3) 0.016 (2) 0.0058 (19) 0.0029 (18) 0.006 (2)
O18 0.0116 (17) 0.026 (2) 0.0170 (17) 0.0135 (16) 0.0056 (14) 0.0040 (15)
O17 0.0187 (18) 0.025 (2) 0.0133 (17) 0.0179 (16) 0.0065 (14) 0.0014 (15)
O11 0.0230 (19) 0.021 (2) 0.0082 (16) 0.0068 (16) 0.0034 (14) −0.0011 (15)
O12 0.028 (2) 0.028 (2) 0.041 (2) 0.0201 (19) 0.0204 (19) 0.0099 (19)
C11 0.013 (2) 0.012 (2) 0.019 (2) 0.009 (2) 0.0114 (19) 0.005 (2)
C12 0.018 (3) 0.011 (2) 0.018 (2) 0.006 (2) 0.007 (2) 0.002 (2)
O2 0.026 (2) 0.044 (3) 0.0178 (18) 0.027 (2) 0.0004 (16) 0.0021 (18)
C2 0.026 (3) 0.019 (3) 0.010 (2) 0.012 (2) 0.010 (2) 0.002 (2)
C3 0.022 (3) 0.020 (3) 0.018 (3) 0.012 (2) 0.007 (2) −0.002 (2)
O3 0.040 (2) 0.020 (2) 0.033 (2) 0.0141 (19) 0.0231 (19) 0.0118 (18)
C13 0.018 (2) 0.016 (3) 0.012 (2) 0.010 (2) 0.0043 (19) 0.000 (2)
O13 0.029 (2) 0.0149 (19) 0.0237 (19) 0.0093 (16) 0.0168 (16) 0.0079 (15)
O14 0.0086 (16) 0.0141 (18) 0.0141 (17) 0.0046 (14) 0.0031 (13) 0.0054 (14)
O4 0.025 (2) 0.0138 (19) 0.0214 (19) 0.0088 (16) 0.0164 (16) 0.0019 (15)
Re2 0.00971 (10) 0.01041 (10) 0.00854 (9) 0.00554 (8) 0.00342 (7) 0.00128 (7)
Re1 0.01226 (10) 0.01220 (11) 0.00847 (9) 0.00860 (8) 0.00437 (7) 0.00248 (8)
C1 0.016 (2) 0.017 (3) 0.023 (3) 0.011 (2) 0.009 (2) 0.012 (2)
O1 0.039 (2) 0.028 (2) 0.0169 (19) 0.0175 (19) 0.0158 (17) 0.0020 (17)

Geometric parameters (Å, °)

N1—C9 1.343 (5) C7—C10 1.493 (6)
N1—C5 1.357 (5) C20—O18 1.215 (5)
N1—Re1 2.180 (4) C20—O17 1.309 (5)
O5—C4 1.261 (5) C19—N2 1.337 (5)
O5—Re1 2.153 (3) C19—H19 0.93
O6—C4 1.258 (5) N2—Re2 2.166 (4)
C4—O6 1.258 (5) O8—C10 1.223 (5)
C4—C5 1.508 (6) O7—C10 1.313 (5)
O15—C14 1.287 (5) O11—C11 1.161 (5)
O15—Re2 2.148 (3) O12—C12 1.135 (6)
C5—C6 1.372 (6) C11—Re2 1.892 (5)
O16—C14 1.227 (5) C12—Re2 1.947 (5)
C15—N2 1.351 (5) O2—C2 1.164 (6)
C15—C16 1.368 (6) C2—Re1 1.906 (5)
C15—C14 1.508 (6) C3—O3 1.165 (6)
C18—C19 1.376 (6) C3—Re1 1.885 (6)
C18—C17 1.385 (6) C13—O13 1.169 (6)
C18—H18 0.93 C13—Re2 1.883 (5)
C17—C16 1.395 (6) O14—Re2 2.153 (3)
C17—C20 1.496 (6) O14—H14B 0.85 (4)
C16—H16 0.93 O14—H14A 0.85 (4)
C8—C9 1.379 (6) O4—Re1 2.170 (3)
C8—C7 1.390 (6) O4—H4A 0.85 (5)
C8—H8 0.93 O4—H4B 0.85 (5)
C6—C7 1.388 (6) Re1—C1 1.915 (5)
C6—H6 0.93 C1—O1 1.151 (5)
C9—H9 0.93
C9—N1—C5 117.6 (4) C15—N2—Re2 115.9 (3)
C9—N1—Re1 126.4 (3) C10—O7—H7 109.5
C5—N1—Re1 115.9 (3) O8—C10—O7 125.2 (4)
C4—O5—Re1 118.5 (3) O8—C10—C7 121.8 (4)
O6—C4—O5 122.9 (4) O7—C10—C7 113.0 (4)
O6—C4—O5 122.9 (4) C20—O17—H17 109.5
O6—C4—C5 119.9 (4) O11—C11—Re2 175.5 (4)
O6—C4—C5 119.9 (4) O12—C12—Re2 179.4 (5)
O5—C4—C5 117.2 (4) O2—C2—Re1 179.9 (5)
C14—O15—Re2 118.6 (3) O3—C3—Re1 176.0 (5)
N1—C5—C6 123.1 (4) O13—C13—Re2 178.8 (4)
N1—C5—C4 113.5 (4) Re2—O14—H14B 116 (3)
C6—C5—C4 123.3 (4) Re2—O14—H14A 121 (3)
N2—C15—C16 122.9 (4) H14B—O14—H14A 112 (3)
N2—C15—C14 114.7 (4) Re1—O4—H4A 124 (3)
C16—C15—C14 122.3 (4) Re1—O4—H4B 121 (3)
O16—C14—O15 124.0 (4) H4A—O4—H4B 110 (3)
O16—C14—C15 120.6 (4) C13—Re2—C11 88.2 (2)
O15—C14—C15 115.4 (4) C13—Re2—C12 87.6 (2)
C19—C18—C17 119.4 (4) C11—Re2—C12 89.52 (19)
C19—C18—H18 120.3 C13—Re2—O15 97.19 (16)
C17—C18—H18 120.3 C11—Re2—O15 170.52 (16)
C18—C17—C16 118.9 (4) C12—Re2—O15 98.45 (16)
C18—C17—C20 118.5 (4) C13—Re2—O14 174.48 (16)
C16—C17—C20 122.6 (4) C11—Re2—O14 95.63 (16)
C15—C16—C17 118.2 (4) C12—Re2—O14 96.35 (17)
C15—C16—H16 120.9 O15—Re2—O14 78.48 (12)
C17—C16—H16 120.9 C13—Re2—N2 96.92 (17)
C9—C8—C7 119.0 (4) C11—Re2—N2 96.70 (16)
C9—C8—H8 120.5 C12—Re2—N2 172.39 (16)
C7—C8—H8 120.5 O15—Re2—N2 74.98 (12)
C5—C6—C7 118.6 (4) O14—Re2—N2 78.73 (13)
C5—C6—H6 120.7 C3—Re1—C2 88.6 (2)
C7—C6—H6 120.7 C3—Re1—C1 88.1 (2)
N1—C9—C8 122.7 (4) C2—Re1—C1 88.6 (2)
N1—C9—H9 118.7 C3—Re1—O5 95.56 (17)
C8—C9—H9 118.7 C2—Re1—O5 98.77 (15)
C6—C7—C8 119.0 (4) C1—Re1—O5 171.85 (16)
C6—C7—C10 119.0 (4) C3—Re1—O4 176.21 (16)
C8—C7—C10 122.0 (4) C2—Re1—O4 92.71 (18)
O18—C20—O17 124.8 (4) C1—Re1—O4 95.49 (17)
O18—C20—C17 120.7 (4) O5—Re1—O4 80.73 (12)
O17—C20—C17 114.5 (4) C3—Re1—N1 96.75 (18)
N2—C19—C18 121.8 (4) C2—Re1—N1 171.93 (16)
N2—C19—H19 119.1 C1—Re1—N1 97.60 (17)
C18—C19—H19 119.1 O5—Re1—N1 74.77 (12)
C19—N2—C15 118.7 (4) O4—Re1—N1 81.58 (14)
C19—N2—Re2 125.3 (3) O1—C1—Re1 176.6 (4)

Hydrogen-bond geometry (Å, °)

D—H··· A D—H H··· A D··· A D—H··· A
O7—H7···O15 i 0.82 1.81 2.595 (4) 160.
O4—H4B···O16 ii 0.85 (5) 2.51 (5) 2.920 (5) 111 (4)
O4—H4B···O8 iii 0.85 (5) 2.01 (3) 2.780 (5) 150 (5)
O4—H4B···O16 ii 0.85 (5) 2.51 (5) 2.920 (5) 111 (4)
O14—H14B···O6 0.85 (5) 1.84 (2) 2.671 (5) 169 (5)
O14—H14A···O18 iii 0.84 (2) 1.87 (2) 2.674 (4) 161 (5)
O17—H17···O6 iv 0.82 1.78 2.602 (4) 177.
C8—H8···O13 v 0.93 2.58 3.253 (5) 130.
C6—H6···O17 iv 0.93 2.55 3.426 (5) 156.
C19—H19···O2 vi 0.93 2.5 3.131 (5) 126.

Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x−1, y, z; (iv) − x+1, − y, − z; (v) − x+1, − y+1, − z+1; (vi) x+1, y, z.

References

1  

Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1083.

2  

Alvarez, C. M., Garcia-Rodriguez, R. & Miguel, D. (2007). Dalton Trans. pp. 3546–3554.

3  

Brandenberg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.

4  

Bruker (2004). SAINT-Plus (including XPREP) and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.

5  

Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.

6  

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

7  

Kemp, G. (2006). PhD thesis, University of Johannesburg, South Africa.

8  

Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.

9  

Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–129.

10  

Schutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E 63, m3195–m3196.

11  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

12  

Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–391.

Figures and Tables

Table 1

Selected geometric parameters (Å, °)

N1—Re1 2.180 (4)
O5—Re1 2.153 (3)
O15—Re2 2.148 (3)
N2—Re2 2.166 (4)
C11—Re2 1.892 (5)
C12—Re2 1.947 (5)
C2—Re1 1.906 (5)
C3—Re1 1.885 (6)
C13—Re2 1.883 (5)
O14—Re2 2.153 (3)
O4—Re1 2.170 (3)
Re1—C1 1.915 (5)
C11—Re2—C12 89.52 (19)
C11—Re2—O15 170.52 (16)
C12—Re2—O15 98.45 (16)
C11—Re2—O14 95.63 (16)
C12—Re2—O14 96.35 (17)
O15—Re2—O14 78.48 (12)
O15—Re2—N2 74.98 (12)
C2—Re1—O5 98.77 (15)
C1—Re1—O4 95.49 (17)
O5—Re1—O4 80.73 (12)
O5—Re1—N1 74.77 (12)
Table 2

Hydrogen-bond geometry (Å, °)

D—H⋯ A D—H H⋯ A DA D—H⋯ A
O7—H7⋯O15 i 0.82 1.81 2.595 (4) 160
O4—H4 B⋯O16 ii 0.85 (5) 2.51 (5) 2.920 (5) 111 (4)
O4—H4 B⋯O8 iii 0.85 (5) 2.01 (3) 2.780 (5) 150 (5)
O4—H4 B⋯O16 ii 0.85 (5) 2.51 (5) 2.920 (5) 111 (4)
O14—H14 B⋯O6 0.85 (5) 1.84 (2) 2.671 (5) 169 (5)
O14—H14 A⋯O18 iii 0.840 (18) 1.87 (2) 2.674 (4) 161 (5)

Symmetry codes: (i) e-64-m1226-efi2.jpg ; (ii) e-64-m1226-efi3.jpg ; (iii) e-64-m1226-efi4.jpg .