catena-Poly[[manganese(II)-tris­(μ-bet­aine-κ 2 O: O′)] tetra­bromido­manganate(IV)

Kocadag, Maria a * Fleck, Michel a Bohatý, Ladislav b [a ] Universität Wien – Geozentrum, Institut für Mineralogie und Kristallographie, Althanstrasse 14, A-1090 Wien, Austria [b ] Universität zu Köln, Institut für Kristallographie, Zülpicher Strasse 49b, D-50674 Köln, Germany

Abstract

The title compound, [Mn(C 5H 11NO 2) 3]·MnBr 4, contains polymeric cationic chains of distorted MnO 6 octa­hedra and bridging betaine mol­ecules, running parallel to the a axis. There are two distinct Mn 2+ cations in the chain, both with site symmetry e-64-m1273-efi1.jpg . Distorted [MnBr 4] 2− tetra­hedra occupy the spaces between the chains.

Related literature

For related literature, see: Chen & Mak (1994 ); Haussühl (1988 , 1989 ); Haussühl & Schreuer (2001 ); Haussühl & Wang (1989 ); Mak (1990 ); Viertorinne et al. (1999 ); Wang et al. (1986 ); Wiehl et al. (2006 a , b )); Chen & Mak (1991 ); Schreuer & Haussühl (1993 ). e-64-m1273-scheme1.jpg

Experimental

Crystal data

  • [Mn(C 5H 11NO 2) 3]·MnBr 4

  • M r = 780.96

  • Triclinic, e-64-m1273-efi2.jpg

  • a = 9.140 (2) Å

  • b = 12.700 (2) Å

  • c = 12.871 (3) Å

  • α = 66.557 (6)°

  • β = 86.063 (7)°

  • γ = 89.249 (7)°

  • V = 1367.3 (4) Å 3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.80 mm −1

  • T = 293 (2) K

  • 0.50 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (Otwinowski & Minor, 1997 ) T min = 0.073, T max = 0.130

  • 17423 measured reflections

  • 7836 independent reflections

  • 5085 reflections with I > 2σ( I)

  • R int = 0.029

Refinement

  • R[ F 2 > 2σ( F 2)] = 0.053

  • wR( F 2) = 0.115

  • S = 1.05

  • 7836 reflections

  • 326 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρ max = 1.77 e Å −3

  • Δρ min = −1.88 e Å −3

Data collection: SMART (Bruker, 2004 ); cell refinement: SMART; data reduction: SAINT (Bruker, 2004 ); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ); molecular graphics: DIAMOND (Bergerhoff et al., 1996 ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028912/hb2779sup1.cif

e-64-m1273-sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028912/hb2779Isup2.hkl

e-64-m1273-Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Notes

[1] Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2779).

Acknowledgements

The author thanks the International Centre for Diffraction Data for financial assistance of this work (grant No. 90-03 ET).

Appendices

supplementary crystallographic information

Comment

The physical properties of compounds of metal salts with the zwitterionic ligand betaine have been investigated intensively in the past (Haussühl & Schreuer, 2001; Haussühl & Wang, 1989; Haussühl, 1989; Haussühl, 1988; Wang et al. , 1986; Chen & Mak, 1994, and references therein).

In particular, the low-dimensional magnetic properties of the isomorphic trigonal group of betaine manganese metal chlorides [(C 5H 11NO 2) 3Mn]. MCl 4 ( M = Mn, Co, Zn, space group P3) has been analysed in detail (Wiehl et al., 2006 b). In these crystals, the betaine ligands operate as µ-( O, O') bridges between Mn 2+ cations thus forming chains of the octahedrally coordinated mangnetic cations ( S = 5/2). A model of an antiferromagnetic Heisenberg spin fits well the magnetic proerties of these crystals (Wiehl et al., 2006 b).

Here, we present the crystal structure of the title compound, (I) (Fig. 1). The crystal structure of (I) contains three crystallographically non-equivalent mangenese atoms. Two of them, Mn1 and Mn2, located on centres of inversion, are sixfold coordinated by oxygen atoms of the carboxylate groups of betaine molecules, which act as bridging ligands to form an one-dimensional tris(carboxylato- O, O')-bridged Mn 2+ complex (Table 1). The cationic chains are oriented along the a axis and possess approximately the rod symmetry P3 (Fig. 2). In the interstices between these chains, anionic distorted tetrahedral groups [Mn(3)Br 4] 2- are located.

Apart from the triclinic symmetry, the structural features of (I) are analogous to those of the trigonal chlorides [(C 5H 11NO 2) 3Mn]. MCl 4 [ M = Mn (Chen & Mak, 1991; Schreuer & Haussühl, 1993), Co (Wiehl et al., 2006a) and Zn (Wiehl et al., 2006b)]. The type of structural units [(C 5H 11NO 2) 3Mn] and [MnBr 4], and the structural packing of these chains and tetrahedra are analogous to the atomic arrangement in the structure of the chloride compounds. Both, the translation period in the direction of the chain axis [ a in (I), c≈ 9.08 Å in the chloride compounds] as well as the interchain distances [ b and c in (I), a = b≈ 12.8 Å in the chloride compounds] correspond well. The interatomic distances and angles within the betaine molecules agree well with the values given in the literature (Viertorinne et al., 1999; Mak, 1990), the carboxylate C—O distances indicate the delocalization of the electrons to a mesomeric state [C—O-distances range from 1.245 (5) to 1.255 (5) Å].

Experimental

The title compound crystallizes from 3:2 stoichiometry aqueous solutions of betaine and MnBr 2 in the temperature range 290 to 300 K in thick tabular prismatic crystals of sulfur-yellow colour. Crystals of optical quality with dimensions up to 25 × 7 × 3 mm were grown from a solution of 167 g betaine and 272 g MnBr 2.4H 2O by very slow evaporation at 295 K during a period of 11 months.

Figures

Fig. 1.

The asymmetric unit of (I), shown with displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

The asymmetric unit of (I), shown with displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.
Fig. 2.

Packing diagram for (I) (left) in comparison with the structure of ([(betaine)3Mn](MCl4)] (Wiehl et al., 2006a, right), viewed along and perpendicular to the chains (top and bottom). Hydrogen atoms are omitted for clarity.

Packing diagram for (I) (left) in comparison with the structure of ([(betaine)3Mn](MCl4)] (Wiehl et al., 2006a, right), viewed along and perpendicular to the chains (top and bottom). Hydrogen atoms are omitted for clarity.

Crystal data

[Mn(C 5H 11NO 2) 3]·MnBr 4 Z = 2
M r = 780.96 F(000) = 764
Triclinic, P1 D x = 1.897 Mg m 3
Hall symbol: -P 1 Melting point: not determined K
a = 9.140 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.700 (2) Å Cell parameters from 1294 reflections
c = 12.871 (3) Å θ = 2.8–26.4°
α = 66.557 (6)° µ = 6.80 mm 1
β = 86.063 (7)° T = 293 K
γ = 89.249 (7)° Prism, yellow
V = 1367.3 (4) Å 3 0.50 × 0.30 × 0.30 mm

Data collection

Bruker SMART CCD diffractometer 7836 independent reflections
Radiation source: fine-focus sealed tube 5085 reflections with I > 2σ( I)
graphite R int = 0.030
Detector resolution: 0.1 pixels mm -1 θ max = 30°, θ min = 1.8°
φ–scan and ω–scans h = −13→13
Absorption correction: multi-scan (Otwinowski & Minor, 1997) k = −18→18
T min = 0.073, T max = 0.130 l = −15→18
17423 measured reflections

Refinement

Refinement on F 2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[ F 2 > 2σ( F 2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR( F 2) = 0.115 w = 1/[σ 2( F o 2) + (0.0151 P) 2 + 6.4946 P] where P = ( F o 2 + 2 F c 2)/3
S = 1.05 (Δ/σ) max < 0.001
7836 reflections Δρ max = 1.77 e Å 3
326 parameters Δρ min = −1.88 e Å 3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc *=kFc[1+0.001xFc 2λ 3/sin(2θ)] -1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0015 (3)

Special details

Experimental. Single-crystal X-ray intensity data were collected at 293 K on a Nonius APEXII diffractometer with CCD-area detector, using 673 frames with phi- and omega-increments of 1 degree and a counting time of 60 s per frame. The crystal-to-detector-distance was 30 mm. The whole ewald sphere was measured. The reflection data were processed with the Nonius program suite DENZO-SMN and corrected for Lorentz, polarization, background and absorption effects (Otwinowski and Minor, 1997). The crystal structure was determined by Direct methods ( SHELXS97, Sheldrick, 2008) and subsequent Fourier and difference Fourier syntheses, followed by full-matrix least-squares refinements on F 2 ( SHELXL97, Sheldrick, 2008). All hydrogen atoms were treated as riding. Using anisotropic treatment of the non-H atoms and unrestrained isotropic treatment of the H atoms, the refinement converged at an R-value of 0.053.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ( F 2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2)

x y z U iso*/ U eq
Mn1 1.0000 0.0000 1.0000 0.0226 (2)
Mn2 0.5000 0.0000 1.0000 0.0234 (2)
Mn3 0.77120 (8) 0.62332 (7) 0.69412 (7) 0.0388 (2)
Br1 0.72670 (6) 0.62971 (5) 0.88548 (5) 0.04926 (17)
Br2 0.73289 (7) 0.43013 (5) 0.69615 (7) 0.05729 (19)
Br3 1.03439 (7) 0.68376 (6) 0.62887 (6) 0.05688 (19)
Br4 0.60829 (11) 0.76456 (8) 0.56062 (8) 0.0922 (3)
O1A 0.1462 (3) 0.1052 (3) 0.8505 (3) 0.0338 (8)
O2A 0.3773 (3) 0.0449 (3) 0.8480 (3) 0.0301 (7)
C1A 0.2801 (4) 0.1200 (4) 0.8221 (4) 0.0256 (9)
C2A 0.3415 (5) 0.2387 (4) 0.7460 (6) 0.0372 (12)
H2A1 0.426 (6) 0.258 (5) 0.781 (5) 0.046 (16)*
H2A2 0.375 (7) 0.234 (5) 0.682 (6) 0.06 (2)*
N3A 0.2438 (4) 0.3404 (3) 0.7206 (4) 0.0366 (10)
C4A 0.1914 (11) 0.3524 (6) 0.8271 (7) 0.082 (3)
H4A1 0.1203 0.4122 0.8106 0.10 (3)*
H4A2 0.2728 0.3715 0.8600 0.13 (4)*
H4A3 0.1472 0.2813 0.8797 0.11 (3)*
C5A 0.3320 (7) 0.4447 (5) 0.6441 (8) 0.068 (2)
H5A1 0.3296 0.4528 0.5668 0.17 (5)*
H5A2 0.4316 0.4364 0.6650 0.11 (3)*
H5A3 0.2912 0.5116 0.6515 0.09 (3)*
C6A 0.1167 (7) 0.3324 (6) 0.6576 (7) 0.067 (2)
H6A1 0.0802 0.4078 0.6166 0.08 (2)*
H6A2 0.0406 0.2857 0.7104 0.10 (3)*
H6A3 0.1474 0.2984 0.6053 0.14 (4)*
O1B 0.8835 (3) −0.0491 (3) 0.8839 (3) 0.0326 (7)
O2B 0.6524 (3) −0.1059 (3) 0.9500 (3) 0.0333 (7)
C1B 0.7526 (4) −0.0671 (3) 0.8728 (4) 0.0265 (9)
C2B 0.7027 (6) −0.0439 (5) 0.7562 (5) 0.0423 (13)
H2B1 0.718 (5) −0.112 (5) 0.743 (5) 0.036 (14)*
H2B2 0.601 (8) −0.024 (6) 0.750 (7) 0.08 (2)*
N3B 0.7830 (4) 0.0477 (3) 0.6558 (4) 0.0329 (9)
C4B 0.9394 (6) 0.0214 (7) 0.6382 (6) 0.0612 (19)
H4B1 0.9462 −0.0541 0.6382 0.11 (3)*
H4B2 0.9934 0.0246 0.6983 0.10 (3)*
H4B3 0.9798 0.0767 0.5667 0.08 (2)*
C5B 0.7081 (8) 0.0607 (7) 0.5518 (6) 0.069 (2)
H5B1 0.7560 0.1207 0.4868 0.07 (2)*
H5B2 0.6073 0.0799 0.5602 0.10 (3)*
H5B3 0.7131 −0.0101 0.5415 0.12 (4)*
C6B 0.7741 (9) 0.1589 (5) 0.6699 (6) 0.0625 (19)
H6B1 0.8302 0.2167 0.6083 0.07 (2)*
H6B2 0.8128 0.1496 0.7405 0.08 (2)*
H6B3 0.6736 0.1817 0.6701 0.14 (4)*
O1C 0.6456 (3) 0.1430 (3) 0.9163 (3) 0.0290 (7)
O2C 0.8693 (3) 0.1519 (3) 0.9718 (3) 0.0323 (7)
C1C 0.7365 (4) 0.1769 (3) 0.9644 (4) 0.0248 (9)
C2C 0.6737 (5) 0.2597 (4) 1.0147 (5) 0.0322 (11)
H2C1 0.668 (6) 0.336 (5) 0.954 (5) 0.041 (15)*
H2C2 0.579 (5) 0.235 (4) 1.044 (4) 0.030 (13)*
N3C 0.7558 (4) 0.2747 (3) 1.1054 (4) 0.0313 (9)
C4C 0.6680 (6) 0.3497 (5) 1.1501 (6) 0.0476 (14)
H4C1 0.5749 0.3134 1.1829 0.06 (2)*
H4C2 0.6528 0.4223 1.0891 0.06 (2)*
H4C3 0.7200 0.3615 1.2070 0.061 (19)*
C5C 0.7746 (7) 0.1616 (5) 1.2014 (5) 0.0526 (15)
H5C1 0.8323 0.1127 1.1745 0.062 (19)*
H5C2 0.6802 0.1265 1.2316 0.08 (2)*
H5C3 0.8236 0.1731 1.2598 0.07 (2)*
C6C 0.9027 (6) 0.3312 (5) 1.0602 (6) 0.0526 (16)
H6C1 0.9568 0.3300 1.1219 0.09 (3)*
H6C2 0.8897 0.4093 1.0086 0.08 (2)*
H6C3 0.9557 0.2907 1.0209 0.063 (19)*

Atomic displacement parameters (Å 2)

U 11 U 22 U 33 U 12 U 13 U 23
Mn1 0.0179 (4) 0.0249 (4) 0.0249 (5) 0.0018 (3) −0.0021 (3) −0.0098 (4)
Mn2 0.0181 (4) 0.0239 (4) 0.0285 (6) 0.0012 (3) −0.0028 (3) −0.0106 (4)
Mn3 0.0387 (4) 0.0352 (4) 0.0424 (5) 0.0046 (3) −0.0074 (3) −0.0146 (4)
Br1 0.0429 (3) 0.0614 (4) 0.0466 (4) 0.0068 (2) −0.0049 (2) −0.0247 (3)
Br2 0.0566 (4) 0.0403 (3) 0.0771 (5) −0.0048 (2) −0.0039 (3) −0.0255 (3)
Br3 0.0526 (3) 0.0688 (4) 0.0461 (4) −0.0236 (3) 0.0062 (3) −0.0204 (3)
Br4 0.1235 (7) 0.0924 (6) 0.0730 (6) 0.0703 (5) −0.0529 (5) −0.0408 (5)
O1A 0.0239 (15) 0.0365 (17) 0.033 (2) −0.0015 (12) 0.0014 (13) −0.0057 (15)
O2A 0.0284 (15) 0.0291 (15) 0.032 (2) 0.0063 (12) −0.0075 (13) −0.0110 (14)
C1A 0.0254 (19) 0.030 (2) 0.021 (2) 0.0010 (16) −0.0029 (16) −0.0093 (18)
C2A 0.024 (2) 0.031 (2) 0.049 (4) 0.0024 (17) −0.001 (2) −0.007 (2)
N3A 0.032 (2) 0.0296 (19) 0.043 (3) 0.0016 (15) −0.0035 (18) −0.0094 (19)
C4A 0.142 (8) 0.047 (4) 0.059 (5) 0.013 (4) 0.014 (5) −0.027 (4)
C5A 0.052 (4) 0.031 (3) 0.093 (7) −0.007 (2) 0.001 (3) 0.005 (3)
C6A 0.043 (3) 0.052 (4) 0.087 (6) 0.010 (3) −0.031 (3) −0.004 (4)
O1B 0.0256 (15) 0.0440 (18) 0.033 (2) 0.0013 (13) −0.0051 (13) −0.0200 (16)
O2B 0.0291 (16) 0.0305 (16) 0.042 (2) 0.0028 (12) 0.0042 (14) −0.0171 (15)
C1B 0.025 (2) 0.0241 (19) 0.033 (3) 0.0046 (15) −0.0050 (17) −0.0139 (19)
C2B 0.040 (3) 0.046 (3) 0.036 (3) −0.013 (2) −0.009 (2) −0.010 (2)
N3B 0.033 (2) 0.036 (2) 0.029 (2) 0.0030 (16) −0.0049 (16) −0.0125 (18)
C4B 0.049 (3) 0.089 (5) 0.037 (4) 0.026 (3) 0.005 (3) −0.018 (4)
C5B 0.074 (5) 0.077 (5) 0.037 (4) −0.018 (4) −0.024 (3) −0.001 (3)
C6B 0.095 (5) 0.038 (3) 0.050 (5) 0.003 (3) 0.016 (4) −0.016 (3)
O1C 0.0289 (15) 0.0280 (15) 0.029 (2) −0.0044 (12) −0.0020 (13) −0.0105 (13)
O2C 0.0261 (15) 0.0288 (15) 0.045 (2) 0.0060 (12) −0.0052 (14) −0.0168 (15)
C1C 0.0258 (19) 0.0199 (18) 0.026 (3) −0.0009 (14) −0.0003 (16) −0.0070 (17)
C2C 0.021 (2) 0.039 (3) 0.042 (3) 0.0059 (18) −0.0085 (19) −0.022 (2)
N3C 0.0264 (18) 0.0337 (19) 0.039 (3) 0.0031 (15) −0.0048 (16) −0.0196 (18)
C4C 0.042 (3) 0.059 (4) 0.058 (4) 0.011 (3) −0.005 (3) −0.040 (3)
C5C 0.073 (4) 0.044 (3) 0.044 (4) 0.008 (3) −0.017 (3) −0.019 (3)
C6C 0.031 (3) 0.060 (4) 0.082 (5) −0.011 (2) 0.003 (3) −0.044 (4)

Geometric parameters (Å, °)

Mn1—O2C i 2.173 (3) O2B—C1B 1.252 (5)
Mn1—O2C 2.173 (3) C1B—C2B 1.512 (7)
Mn1—O1B 2.176 (3) C2B—N3B 1.503 (7)
Mn1—O1B i 2.176 (3) C2B—H2B1 0.95 (5)
Mn1—O1A ii 2.219 (3) C2B—H2B2 0.96 (7)
Mn1—O1A iii 2.219 (3) N3B—C4B 1.487 (6)
Mn2—O1C ii 2.131 (3) N3B—C6B 1.493 (7)
Mn2—O1C 2.131 (3) N3B—C5B 1.495 (7)
Mn2—O2B 2.163 (3) C4B—H4B1 0.9600
Mn2—O2B ii 2.163 (3) C4B—H4B2 0.9600
Mn2—O2A ii 2.192 (3) C4B—H4B3 0.9600
Mn2—O2A 2.192 (3) C5B—H5B1 0.9600
Mn3—Br2 2.4724 (11) C5B—H5B2 0.9600
Mn3—Br4 2.4932 (11) C5B—H5B3 0.9600
Mn3—Br1 2.5019 (12) C6B—H6B1 0.9600
Mn3—Br3 2.5179 (11) C6B—H6B2 0.9600
O1A—C1A 1.247 (5) C6B—H6B3 0.9600
O2A—C1A 1.255 (5) O1C—C1C 1.245 (5)
C1A—C2A 1.522 (6) O2C—C1C 1.251 (5)
C2A—N3A 1.499 (6) C1C—C2C 1.527 (6)
C2A—H2A1 1.00 (6) C2C—N3C 1.505 (6)
C2A—H2A2 0.89 (7) C2C—H2C1 0.97 (6)
N3A—C4A 1.485 (8) C2C—H2C2 0.92 (5)
N3A—C6A 1.488 (7) N3C—C5C 1.493 (7)
N3A—C5A 1.502 (7) N3C—C4C 1.495 (6)
C4A—H4A1 0.9600 N3C—C6C 1.497 (6)
C4A—H4A2 0.9600 C4C—H4C1 0.9600
C4A—H4A3 0.9600 C4C—H4C2 0.9600
C5A—H5A1 0.9600 C4C—H4C3 0.9600
C5A—H5A2 0.9600 C5C—H5C1 0.9600
C5A—H5A3 0.9600 C5C—H5C2 0.9600
C6A—H6A1 0.9600 C5C—H5C3 0.9600
C6A—H6A2 0.9600 C6C—H6C1 0.9600
C6A—H6A3 0.9600 C6C—H6C2 0.9600
O1B—C1B 1.249 (5) C6C—H6C3 0.9600
O2C i—Mn1—O2C 180.0 C1B—O1B—Mn1 135.7 (3)
O2C i—Mn1—O1B 86.19 (12) C1B—O2B—Mn2 124.0 (3)
O2C—Mn1—O1B 93.81 (12) O1B—C1B—O2B 127.1 (5)
O2C i—Mn1—O1B i 93.81 (12) O1B—C1B—C2B 119.7 (4)
O2C—Mn1—O1B i 86.19 (12) O2B—C1B—C2B 113.1 (4)
O1B—Mn1—O1B i 180.0 N3B—C2B—C1B 117.9 (4)
O2C i—Mn1—O1A ii 88.25 (12) N3B—C2B—H2B1 104 (3)
O2C—Mn1—O1A ii 91.75 (12) C1B—C2B—H2B1 107 (3)
O1B—Mn1—O1A ii 93.30 (13) N3B—C2B—H2B2 105 (5)
O1B i—Mn1—O1A ii 86.70 (13) C1B—C2B—H2B2 113 (5)
O2C i—Mn1—O1A iii 91.75 (12) H2B1—C2B—H2B2 109 (5)
O2C—Mn1—O1A iii 88.25 (12) C4B—N3B—C6B 109.3 (5)
O1B—Mn1—O1A iii 86.70 (13) C4B—N3B—C5B 107.8 (5)
O1B i—Mn1—O1A iii 93.30 (13) C6B—N3B—C5B 108.5 (5)
O1A ii—Mn1—O1A iii 180.0 C4B—N3B—C2B 113.8 (4)
O1C ii—Mn2—O1C 180.0 C6B—N3B—C2B 109.1 (4)
O1C ii—Mn2—O2B 90.79 (12) C5B—N3B—C2B 108.2 (4)
O1C—Mn2—O2B 89.21 (12) N3B—C4B—H4B1 109.5
O1C ii—Mn2—O2B ii 89.21 (12) N3B—C4B—H4B2 109.5
O1C—Mn2—O2B ii 90.79 (12) H4B1—C4B—H4B2 109.5
O2B—Mn2—O2B ii 180.0 N3B—C4B—H4B3 109.5
O1C ii—Mn2—O2A ii 91.45 (12) H4B1—C4B—H4B3 109.5
O1C—Mn2—O2A ii 88.55 (12) H4B2—C4B—H4B3 109.5
O2B—Mn2—O2A ii 86.67 (12) N3B—C5B—H5B1 109.5
O2B ii—Mn2—O2A ii 93.33 (12) N3B—C5B—H5B2 109.5
O1C ii—Mn2—O2A 88.55 (12) H5B1—C5B—H5B2 109.5
O1C—Mn2—O2A 91.45 (12) N3B—C5B—H5B3 109.5
O2B—Mn2—O2A 93.33 (12) H5B1—C5B—H5B3 109.5
O2B ii—Mn2—O2A 86.67 (12) H5B2—C5B—H5B3 109.5
O2A ii—Mn2—O2A 180.0 N3B—C6B—H6B1 109.5
Br2—Mn3—Br4 110.42 (4) N3B—C6B—H6B2 109.5
Br2—Mn3—Br1 113.26 (4) H6B1—C6B—H6B2 109.5
Br4—Mn3—Br1 108.64 (4) N3B—C6B—H6B3 109.5
Br2—Mn3—Br3 108.51 (4) H6B1—C6B—H6B3 109.5
Br4—Mn3—Br3 108.99 (5) H6B2—C6B—H6B3 109.5
Br1—Mn3—Br3 106.89 (4) C1C—O1C—Mn2 124.6 (3)
C1A—O1A—Mn1 iv 138.8 (3) C1C—O2C—Mn1 136.7 (3)
C1A—O2A—Mn2 123.0 (3) O1C—C1C—O2C 126.7 (4)
O1A—C1A—O2A 127.0 (4) O1C—C1C—C2C 113.7 (4)
O1A—C1A—C2A 120.5 (4) O2C—C1C—C2C 119.5 (4)
O2A—C1A—C2A 112.5 (4) N3C—C2C—C1C 117.5 (4)
N3A—C2A—C1A 119.0 (4) N3C—C2C—H2C1 106 (3)
N3A—C2A—H2A1 104 (3) C1C—C2C—H2C1 109 (3)
C1A—C2A—H2A1 110 (3) N3C—C2C—H2C2 108 (3)
N3A—C2A—H2A2 110 (4) C1C—C2C—H2C2 108 (3)
C1A—C2A—H2A2 106 (4) H2C1—C2C—H2C2 108 (4)
H2A1—C2A—H2A2 108 (5) C5C—N3C—C4C 108.2 (5)
C4A—N3A—C6A 110.1 (6) C5C—N3C—C6C 109.6 (4)
C4A—N3A—C2A 110.4 (5) C4C—N3C—C6C 108.0 (4)
C6A—N3A—C2A 111.7 (5) C5C—N3C—C2C 110.5 (4)
C4A—N3A—C5A 110.2 (6) C4C—N3C—C2C 108.4 (4)
C6A—N3A—C5A 106.9 (5) C6C—N3C—C2C 112.0 (4)
C2A—N3A—C5A 107.4 (4) N3C—C4C—H4C1 109.5
N3A—C4A—H4A1 109.5 N3C—C4C—H4C2 109.5
N3A—C4A—H4A2 109.5 H4C1—C4C—H4C2 109.5
H4A1—C4A—H4A2 109.5 N3C—C4C—H4C3 109.5
N3A—C4A—H4A3 109.5 H4C1—C4C—H4C3 109.5
H4A1—C4A—H4A3 109.5 H4C2—C4C—H4C3 109.5
H4A2—C4A—H4A3 109.5 N3C—C5C—H5C1 109.5
N3A—C5A—H5A1 109.5 N3C—C5C—H5C2 109.5
N3A—C5A—H5A2 109.5 H5C1—C5C—H5C2 109.5
H5A1—C5A—H5A2 109.5 N3C—C5C—H5C3 109.5
N3A—C5A—H5A3 109.5 H5C1—C5C—H5C3 109.5
H5A1—C5A—H5A3 109.5 H5C2—C5C—H5C3 109.5
H5A2—C5A—H5A3 109.5 N3C—C6C—H6C1 109.5
N3A—C6A—H6A1 109.5 N3C—C6C—H6C2 109.5
N3A—C6A—H6A2 109.5 H6C1—C6C—H6C2 109.5
H6A1—C6A—H6A2 109.5 N3C—C6C—H6C3 109.5
N3A—C6A—H6A3 109.5 H6C1—C6C—H6C3 109.5
H6A1—C6A—H6A3 109.5 H6C2—C6C—H6C3 109.5
H6A2—C6A—H6A3 109.5

Symmetry codes: (i) − x+2, − y, − z+2; (ii) − x+1, − y, − z+2; (iii) x+1, y, z; (iv) x−1, y, z.

References

1  

Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221–225.

2  

Bruker (2004). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.

3  

Chen, X.-M. & Mak, T. C. W. (1991). Inorg. Chim. Acta, 189, 3–5.

4  

Chen, X.-M. & Mak, T. C. W. (1994). Inorg. Chem. 33, 2444–2447.

5  

Haussühl, S. (1988). Solid State Commun. 68, 963–966.

6  

Haussühl, S. (1989). Z. Kristallogr. 188, 311–320.

7  

Haussühl, E. & Schreuer, J. (2001). Z. Kristallogr. 216, 616–620.

8  

Haussühl, S. & Wang, J. (1989). Z. Kristallogr. 187, 249–251.

9  

Mak, T. C. W. (1990). J. Mol. Struct. 220, 13–18.

10  

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

11  

Schreuer, J. & Haussühl, S. (1993). Z. Kristallogr. 205, 309–310.

12  

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

13  

Viertorinne, M., Valkonen, J., Pitkänen, I., Mathlouthi, M. & Nurmi, J. (1999). J. Mol. Struct. 477, 23–29.

14  

Wang, J., Gnanam, F. D. & Haussühl, S. (1986). Z. Kristallogr. 175, 155–158.

15  

Wiehl, L., Schreuer, J. & Haussühl, E. (2006 a). Z. Kristallogr. New Cryst. Struct. 221, 77–79.

16  

Wiehl, L., Schreuer, J., Haussühl, E., Winkler, B., Removic-Langer, K., Wolf, B., Lang, M. & Milman, V. (2006 b). J. Phys. Condens. Matter, 18, 11067–11079.

Figures and Tables

Table 1

Selected bond lengths (Å)

Mn1—O2 C 2.173 (3)
Mn1—O1 B 2.176 (3)
Mn1—O1 A i 2.219 (3)
Mn2—O1 C 2.131 (3)
Mn2—O2 B 2.163 (3)
Mn2—O2 A 2.192 (3)
Mn3—Br2 2.4724 (11)
Mn3—Br4 2.4932 (11)
Mn3—Br1 2.5019 (12)
Mn3—Br3 2.5179 (11)

Symmetry code: (i) e-64-m1273-efi3.jpg .